当前位置:网站首页>Deployment of mask detection flash for yolov5
Deployment of mask detection flash for yolov5
2022-04-23 01:35:00 【Sink Arsenic】
- I don't know how to solve this error report , I checked the solution online and added import matplotlib and matplotlib.use(‘Agg’) It's still useless . But it only appears when the interface is closed , It should not affect the use .
OSError: [Errno 41] Protocol wrong type for socket
Assertion failed: (NSViewIsCurrentlyBuildingLayerTreeForDisplay() != currentlyBuildingLayerTree), function NSViewSetCurrentlyBuildingLayerTreeForDisplay, file /System/Volumes/Data/SWE/macOS/BuildRoots/e90674e518/Library/Caches/com.apple.xbs/Sources/AppKit/AppKit-2022.50.114/AppKit.subproj/NSView.m, line 13412.
Process finished with exit code 132 (interrupted by signal 4: SIGILL)
Reference material
Alibaba cloud Ubuntu Deploy
github flask yolov3 Deploy
flask Play in browser rtsp Real time flow
Only computer cameras can be called
from flask import Flask, render_template, Response
import argparse
from pathlib import Path
import os
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import numpy as np
import sys
from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
''' *** Model initialization *** '''
@torch.no_grad()
def model_load(weights="/Users/sinkarsenic/Downloads/mask_detect/ The weight /best.pt", # model.pt path(s)
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
):
device = select_device(device)
half &= device.type != 'cpu' # half precision only supported on CUDA
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn)
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
# Half
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt:
model.model.half() if half else model.model.float()
print(" Model loading completed !")
return model
app = Flask(__name__, static_url_path='',
static_folder='static',
template_folder='templates')
@app.route('/')
def index():
return render_template('index.html')
def gen():
model = model_load()
device = select_device('cpu')
imgsz = [640, 640] # inference size (pixels)
conf_thres = 0.25 # confidence threshold
iou_thres = 0.45 # NMS IOU threshold
max_det = 1000 # maximum detections per image
view_img = False # show results
save_txt = False # save results to *.txt
save_conf = False # save confidences in --save-txt labels
save_crop = False # save cropped prediction boxes
nosave = False # do not save images/videos
classes = None # filter by class: --class 0, or --class 0 2 3
agnostic_nms = False # class-agnostic NMS
augment = False # ugmented inference
visualize = False # visualize features
line_thickness = 3 # bounding box thickness (pixels)
hide_labels = False # hide labels
hide_conf = False # hide confidences
half = False # use FP16 half-precision inference
dnn = False # use OpenCV DNN for ONNX inference
source = str(0)
webcam = True
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
imgsz = check_img_size(imgsz, s=stride) # check image size
save_img = not nosave and not source.endswith('.txt') # save inference images
# Dataloader
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt and not jit)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
if pt and device.type != "cpu":
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
# visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{
i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
# save_path = str(save_dir / p.name) # im.jpg
# txt_path = str(save_dir / 'labels' / p.stem) + (
# '' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{
n} {
names[int(c)]}{
's' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(
-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
# with open(txt_path + '.txt', 'a') as f:
# f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{
names[c]} {
conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
# if save_crop:
# save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg',
# BGR=True)
# Print time (inference-only)
LOGGER.info(f'{
s}Done. ({
t3 - t2:.3f}s)')
# Stream results
im0 = annotator.result()
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
cv2.imwrite('frame.jpg', im0)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + open('frame.jpg', 'rb').read() + b'\r\n')
# String results
print(s)
# wait key to break
if cv2.waitKey(1) & 0xFF == ord('q'):
break
@app.route('/video_feed')
def video_feed():
return Response(gen(),
mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='/Users/sinkarsenic/Downloads/mask_detect/ The weight /best.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='0', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.15, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--frame-rate', default=0, type=int, help='sample rate')
opt = parser.parse_args()
app.run(debug=True)
Use rstp Push flow
It's from Iraqi television
from flask import Flask, render_template, Response
import argparse
from pathlib import Path
import os
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import numpy as np
import sys
from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
''' *** Model initialization *** '''
@torch.no_grad()
def model_load(weights="/Users/sinkarsenic/Downloads/mask_detect/ The weight /best.pt", # model.pt path(s)
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
):
device = select_device(device)
half &= device.type != 'cpu' # half precision only supported on CUDA
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn)
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
# Half
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt:
model.model.half() if half else model.model.float()
print(" Model loading completed !")
return model
app = Flask(__name__, static_url_path='',
static_folder='static',
template_folder='templates')
@app.route('/')
def index():
return render_template('index.html')
def gen():
model = model_load()
sourse = "rtmp://ns8.indexforce.com/home/mystream"
device = select_device('cpu')
imgsz = [640, 640] # inference size (pixels)
conf_thres = 0.25 # confidence threshold
iou_thres = 0.45 # NMS IOU threshold
max_det = 1000 # maximum detections per image
view_img = False # show results
save_txt = False # save results to *.txt
save_conf = False # save confidences in --save-txt labels
save_crop = False # save cropped prediction boxes
nosave = True # do not save images/videos
classes = None # filter by class: --class 0, or --class 0 2 3
agnostic_nms = False # class-agnostic NMS
augment = False # ugmented inference
visualize = False # visualize features
line_thickness = 3 # bounding box thickness (pixels)
hide_labels = False # hide labels
hide_conf = False # hide confidences
half = False # use FP16 half-precision inference
dnn = False # use OpenCV DNN for ONNX inference
source = str(sourse)
#webcam = False
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
imgsz = check_img_size(imgsz, s=stride) # check image size
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# Dataloader
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt and not jit)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
if pt and device.type != "cpu":
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
# visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{
i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
# save_path = str(save_dir / p.name) # im.jpg
# txt_path = str(save_dir / 'labels' / p.stem) + (
# '' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{
n} {
names[int(c)]}{
's' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(
-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
# with open(txt_path + '.txt', 'a') as f:
# f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{
names[c]} {
conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
# if save_crop:
# save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg',
# BGR=True)
# Print time (inference-only)
LOGGER.info(f'{
s}Done. ({
t3 - t2:.3f}s)')
# Stream results
im0 = annotator.result()
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
cv2.imwrite('frame.jpg', im0)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + open('frame.jpg', 'rb').read() + b'\r\n')
# String results
print(s)
# wait key to break
if cv2.waitKey(1) & 0xFF == ord('q'):
break
@app.route('/video_feed')
def video_feed():
return Response(gen(),
mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='/Users/sinkarsenic/Downloads/mask_detect/ The weight /best.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='rtmp://ns8.indexforce.com/home/mystream', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.15, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--frame-rate', default=0, type=int, help='sample rate')
opt = parser.parse_args()
app.run(debug=False)
版权声明
本文为[Sink Arsenic]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204220922233180.html
边栏推荐
- Interface automation session authentication solution
- Gbase 8s Group by 功能介绍
- 计蒜客:方程的解数
- Introduction to Alibaba's super large-scale Flink cluster operation and maintenance system
- gin -get请求的小示例1-Handle处理GET请求
- Jerry's AI server [chapter]
- Articles for May
- Optical cat super account password, reset optical cat to obtain super account password
- Here's the point. Have you mastered the most complete Web3 jargon guide?
- Jisuan Hakka spectrum (DFS for direct post algebra)
猜你喜欢

gin框架的学习--golang

DFS奇偶性剪枝

App uses the template message from WeChat official account for message push.

Here's the point. Have you mastered the most complete Web3 jargon guide?

Futr3d: a unified 3D detection framework for sensor fusion

Vscode + PHP debug + namespace guidelines

Slow response of analysis API

“自虐神器”一夜爆火:用手柄控制自己的脸,代码自取,后果自负

引爆炸弹(DFS)

How to introduce SPI into a project
随机推荐
Error: permissionerror: [winerror 32] this file is in use by another program and cannot be accessed by the process. Solution of "+ file path"
Abused "architect"!
Vscode + PHP debug + namespace guidelines
.NET(C#) MySQL conn.Open()报错:SSL Connection error的解决方法
智能手表的下半场,机遇与挑战并存
Linked list dynamic header insertion
“自虐神器”一夜爆火:用手柄控制自己的脸,代码自取,后果自负
gin -get请求的小示例1-Handle处理GET请求
The most easy to understand service container and scope of dependency injection
Update description of the latest process engine flowable 6.7.2
Text justify, orientation, combine text attributes
World reading day: 18 it books with Douban score above 9.0 are worth collecting
Jisuan Hakka spectrum (DFS for direct post algebra)
GBase 8t索引
GBASE 8s 并发控制之封锁操作
iTextSharp 基础结构
Scope of define
What is October 24th? Why are there no senior programmers in China in their fifties and sixties, while foreigners,,, Yu Nianyu Hui take you to celebrate the 1024 programmer Festival
Blocking granularity of gbase 8s concurrency control
Custom numeric input control