当前位置:网站首页>Orthogonal-Uncorrelated-Independent
Orthogonal-Uncorrelated-Independent
2022-08-05 14:33:00 【why why】
This article describes orthogonality in random variables、不相关、Separate distinctions and connections.
概述
All three are concepts that describe the relationship between random variables,It seems that both can represent the distant relationship between two random variables,But the definitions and constraints are different.
- 考察m维随机变量X,Y之间的关系.
定义
正交
定义R(X, Y) = E[XY]is the correlation function:若R(X, Y)=0,称X,Y正交
不相关
定义 E[XY] = E[X]E[Y],则X,Y不相关
- X,Y的协方差:
Uncorrelation can also be used as covariance0表示
- X,Y的相关系数:
The correlation coefficient can also be used for uncorrelation0表示
独立
Independence is generally represented by their probability density function.The joint distribution is equal to the product of their respective independent marginal distributions,independent:
关系
独立 -> 不相关
Independence is a more stringent requirement for variables,如果两个随机变量独立,must not be relevant,In other words, independence is a sufficient and unnecessary condition for irrelevance.
- 若已知X,Y联合概率密度f(x, y)is equal to the edge density function of bothg(x), h(y)的乘积,则有:
So the independent variables are not correlated,In contrast, uncorrelation cannot directly lead to independence
不相关 --高斯分布–> 独立
When the random variable follows a Gaussian distribution,Uncorrelated can be deduced to be independent:
- We now consider a slightly more complicated situation,X为n维随机变量:
- There is no correlation between random variables,并且服从高斯分布:
- 那么此时X的联合概率密度函数为:
- 其中{\bf{\Sigma } }为协方差矩阵,Because there is no correlation between random variables:
- 其中\sigma_i 为x_i的标准差,Then the joint probability density function can be written as :
- Therefore, when the random variable follows a Gaussian distribution,不相关与独立等价,互为充要条件.
正交 – 不相关
- 根据定义可以得知: 当E[X],E[Y]至少有一个为0When orthogonal is equivalent to uncorrelated.
参考资料
边栏推荐
- The power behind | Open up a new experience of intelligent teaching Huayun Data helps Tianchang Industrial School to build a new IT training room
- Today's sleep quality record 78 points
- 高效会议纪要重点
- npm install时卡在sill idealTree buildDeps
- OpenHarmony像素单位(eTS)
- 双因子与多因子身份验证有什么区别?
- 用脚本启动和关闭jar包或者war包
- Postgresql源码(67)LWLock锁的内存结构与初始化
- Redis - Talking about master-slave synchronization
- day7·拆包与装包
猜你喜欢
随机推荐
Design of Fingerprint Time Attendance Machine + Host Computer Management Based on STM32 MCU
20款短视频自媒体必备工具,让你的运营效率翻倍
An in-depth long article discusses the simplification and speedup of JOIN operations
Taurus.MVC WebAPI 入门开发教程3:路由类型和路由映射。
Some understanding of multithreading
NLP 论文领读|无参数机器翻译遇上对比学习:效率和性能我全都要!
十五个AI图像放大工具
【虚拟机数据恢复】Hyper-V虚拟化文件丢失,虚拟化服务器不可用的数据恢复案例
Integration testing of software testing
ES6解构详解
Redis - Talking about master-slave synchronization
图神经网络 图像处理,为什么用图神经网络
2022-08-02~04 Group 4 Self-cultivation class study notes (every day)
JSCH is easy to use
更新数据到数据库和缓存的步骤
OpenHarmony像素单位(eTS)
OpenHarmony如何查询设备类型
毕业论文说明书排版样例
【Endnote】插入文献时,自动弹出select matching reference
Do wealth management products only see the principal but not the income?









