当前位置:网站首页>knn预测最小案例总结
knn预测最小案例总结
2022-04-21 08:04:00 【weixin_38871988】
写10个数组走一遍流程
from sklearn import *
# x = [0,1,2,3,4,5,6,7,8,9]
x = [[0], [1], [2], [3],[4], [5], [6], [7],[8],[9]]
y = [0, 0, 1, 1,2,2,2,2,3,4]
# # 2、数据基本处理 -- 划分数据集
x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y,test_size=0.3,random_state=1)
# x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y,test_size=0.1,random_state=1)
print(x_train)
print(x_test)
print(y_train)
print(y_test)
guiyi=preprocessing.MinMaxScaler(feature_range=(0,1))
data2=guiyi.fit_transform(x_train)
print(data2)
print("归一化的结果:\n", data2)
stand=preprocessing.StandardScaler()
# data = stand.transform(x_train)
data = stand.fit_transform(x_train)
datatest=stand.fit_transform(x_test)
# data = stand.transform(x_train)
# print(data)
print("标准化的结果:\n", data)
# print("每一列特征的平均值:\n", stand.mean_)
# print("每一列特征的方差:\n", stand.var_)
# 实例化API
# est=neighbors.KNeighborsClassifier(n_neighbors=1)
# est.fit(x_train, y_train)
param_dict = {
"n_neighbors": [1,2,3,4]}
est1 = neighbors.KNeighborsClassifier()
est=model_selection.GridSearchCV(est1, param_grid=param_dict, cv=3)
# 4.3 fit数据进行训练
est1.fit(x_train, y_train)
est.fit(x_train, y_train)
# 5、评估模型效果
# 方法a:比对预测结果和真实值
y_predict = est1.predict(x_test)
print("比对预测结果和真实值:\n", y_predict == y_test)
# 方法b:直接计算准确率
score = est1.score(x_test, y_test)
print("直接计算准确率:\n", score)
print(y_test)
print(est1.predict(x_test))#[2]
##############归一化和标准化实在无谁优谁劣,最好测试集用训练集的均值和方差,目标数据不用归一或者标准化处理
#其实准确来讲并没有进行学习,只是训练时建立了一个树结构,预测时寻找临近点
#交叉验证时训练集里的折数是不是要和测试集的对应起来
print("在交叉验证中验证的最好结果:\n", est.best_score_)
print("最好的参数模型:\n", est.best_estimator_)
print("每次交叉验证后的准确率结果:\n", est.cv_results_)

版权声明
本文为[weixin_38871988]所创,转载请带上原文链接,感谢
https://blog.csdn.net/weixin_38871988/article/details/109534807
边栏推荐
- 综合案例:品优购项目(品优购项目流程,SEO优化,TDK三大标签,代码)后期逐步优化
- 链表结点的删除
- ASUS good screen 120Hz high refresh rate, opening a new pattern of OLED Market
- Use of antv X6 layout
- Opencv图像处理之形态学操作
- Xiaomi router 3G R3G brushes in the records of feed and openwrt 20.02.2
- L2-3 sequence traversal of complete binary tree (25 points)
- 第四章 约束与索引
- 【读书笔记->统计学】07-01 离散型概率分布-几何分布概念简介
- pydeck助数百万数据点高效可视化渲染
猜你喜欢
随机推荐
autojs连接不上电脑,提示连接失败,权限不足
容联七陌助力知名新零售品牌,重塑企业增长新链路
Hierarchical traversal of binary tree
关于深度学习画图这件事
Kernel PWN learning (1) -- environment construction
Developing grpc application based on well-known micro service framework go micro
TX2 install ROS melody opencv3 4.5 ceres1. 14.0 Eigen3. 3.9 gtsam cv_ bridge
Postgresql limit sql性能分析
第八章 事务
链表的静态插入和动态遍历
Eval() function
求其最大公约数和最小公倍数
22年4月刷题总结
配置多个ssh-key
答案为是或否的选项, 是使用一个复选框checkbox还是两个单选框radio? 哪个更合适? 为什么?
Xiaomi router 3G R3G brushes in the records of feed and openwrt 20.02.2
牛客白月赛4 【题解】
MySQL查看字符集和校对规则
echart双折线-echart图表(二)
[template] optimized drawing of line segment tree









