当前位置:网站首页>Lecture 2 Linear Model Linear Model
Lecture 2 Linear Model Linear Model
2022-08-05 05:23:00 【A long way to go】
参考资料
- 一句话解释numpy.meshgrid()
- matplotlib教程之——Custom profiles and drawing styles(rcParams和style)
- python中zip()函数的用法
- matplotlib之plot()详解
- matplotlib 3D绘图警告
课堂练习
实现线性模型y=wx的平面图
import numpy as np
import matplotlib.pyplot as plt
#保存数据集,The same index is a sample
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
#Feedforward of the model
def forward(x):
return x * w
#损失函数
def loss(x, y):
y_pred = forward(x) #According to the feedforward requirementy_hat
return (y_pred - y) ** 2 #计算损失
# 穷举法
w_list = [] #权重
mse_list = [] #The loss value corresponding to the weight
for w in np.arange(0.0, 4.1, 0.1):
print("w=", w)
l_sum = 0
#从x_data, y_data取出x_val, y_val
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
l_sum += loss_val
print('x_val==', x_val, 'y_val==',y_val, 'y_pred_val==',y_pred_val,'loss_val==', loss_val)
print('MSE=', l_sum / 3)
w_list.append(w)
mse_list.append(l_sum / 3)
#调用画图
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
pattern trace
课后练习
实现线性模型(y=wx+b)并输出loss的3D图像
There are several issues that need to be addressed here
1.w,b的取值
in previous class practice,只需要取一个w,因此可以用for循环取值.Correction is required in the exercises after classw,bTwo values for value operation,因此要使用meshgrid函数
2.Images cannot be displayed in Chinese
Add in front
from pylab import * mpl.rcParams[‘font.sans-serif’] = [‘SimHei’]
3.matplotlib 3D绘图警告
matplotlib 3D绘图警告
Code for homework exercises:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
#Here the function is set to y=3x+2
x_data = [1.0,2.0,3.0]
y_data = [5.0,8.0,11.0]
def forward(x):
return x * w + b
def loss(x,y):
y_pred = forward(x)
return (y_pred-y)*(y_pred-y)
mse_list = []
W=np.arange(0.0,4.1,0.1)
B=np.arange(0.0,4.1,0.1)
w,b=np.meshgrid(W,B)
# print("w==",w)
# print('b==',b)
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
print('x_val==', x_val,'\ny_val==', y_val,'\ny_pred_val==', y_pred_val, '\nloss_val==',loss_val)
l_sum += loss_val
fig = plt.figure()
ax = Axes3D(fig,auto_add_to_figure=False)
fig.add_axes(ax)
ax.plot_surface(w, b, l_sum/3)
ax.set_xlabel("权重 W")
ax.set_ylabel("偏置项 B")
ax.set_zlabel("损失值")
plt.show()
3D图:
边栏推荐
- SQL(二) —— join窗口函数视图
- Returned object not currently part of this pool
- 【过一下11】随机森林和特征工程
- Returned object not currently part of this pool
- Detailed Explanation of Redis Sentinel Mode Configuration File
- 【技能】长期更新
- Structured Light 3D Reconstruction (2) Line Structured Light 3D Reconstruction
- The role of DataContext in WPF
- 【过一下10】sklearn使用记录
- Requests库部署与常用函数讲解
猜你喜欢

ESP32 485 Illuminance

Pycharm中使用pip安装第三方库安装失败:“Non-zero exit code (2)“的解决方法

【过一下3】卷积&图像噪音&边缘&纹理

Structured Light 3D Reconstruction (2) Line Structured Light 3D Reconstruction

The underlying mechanism of the class

OFDM Lecture 16 5 -Discrete Convolution, ISI and ICI on DMT/OFDM Systems

jvm three heap and stack

A blog clears the Redis technology stack

Flutter real machine running and simulator running

server disk array
随机推荐
OFDM Lecture 16 5 -Discrete Convolution, ISI and ICI on DMT/OFDM Systems
RDD和DataFrame和Dataset
【过一下11】随机森林和特征工程
OFDM 十六讲 5 -Discrete Convolution, ISI and ICI on DMT/OFDM Systems
Opencv中,imag=cv2.cvtColor(imag,cv2.COLOR_BGR2GRAY) 报错:error:!_src.empty() in function ‘cv::cvtColor‘
Flutter真机运行及模拟器运行
SQL(一) —— 增删改查
【记一下1】2022年6月29日 哥和弟 双重痛苦
MySQL Foundation (1) - Basic Cognition and Operation
Flutter 父子组件如何都能收到点击事件
使用二维码解决固定资产管理的难题
[Study Notes Dish Dog Learning C] Classic Written Exam Questions of Dynamic Memory Management
Flutter learning - the beginning
vscode+pytorch使用经验记录(个人记录+不定时更新)
server disk array
jvm 三 之堆与栈
【过一下16】回顾一下七月
小白一枚各位大牛轻虐虐
uva1325
WPF中DataContext作用