当前位置:网站首页>[number theory] prime number (I): basic concepts, properties, conjectures and theorems
[number theory] prime number (I): basic concepts, properties, conjectures and theorems
2022-04-22 07:20:00 【default111】
My number theory - The prime part of the blog is 5part:
Basic concepts 、 nature 、 guess 、 Theorem
Prime sieve method ( A sieve 、 Euler screen 、 Interval sieve )
Prime judgment ( Simple method 、 model 6 Law 、Rabin-Miller And improvement )
The decomposition of numbers (Pollard-rho)
Mason prime number (Lucas_Lehmer Judgment method )
List of articles
Basic concepts and properties
- > 1 >1 >1, Positive integer , except 1 And itself cannot be divided by other numbers
- d > 1 , d ∈ N ∗ , p yes plain Count , d ∣ p ⇒ d = p d>1,d\in N^*,p Prime number ,d|p\Rightarrow d=p d>1,d∈N∗,p yes plain Count ,d∣p⇒d=p
- p p p Prime number , p ∣ a b ⇒ p ∣ a o r p ∣ b p|ab\Rightarrow p|a\quad or\quad p|b p∣ab⇒p∣aorp∣b
- There are infinite primes
- Each is greater than 1 All positive integers have a prime factor
- n n n Is the sum , Then there will be ≤ n \leq \sqrt n ≤n The prime factor of
Theorem and conjecture
guess
- Bertrand conjectures : Arbitrary positive integer n n n ( Greater than 1), There are prime numbers p p p Yes n < p < 2 n n<p<2n n<p<2n
- Twin prime conjecture : There are an infinite number of p p p and p + 2 p+2 p+2 The prime number of is right
- Goldbach conjectures : Each is greater than 2 2 2 The positive even number of can be written as the sum of two prime numbers
Prime number theorem
-
Definition π ( x ) \pi(x) π(x) Say less than x x x The prime number of , π ( x ) = x ln x \pi(x)=\frac{x}{\ln x} π(x)=lnxx
-
inference : Definition p n p_n pn For the first time n n n Prime number , p n ∼ n ln n p_n \sim n\ln n pn∼nlnn
Basic theorem of arithmetic
-
Theorem : Each is greater than 1 1 1 The positive integer n n n Can be uniquely written as the product of prime numbers n = p 1 α 1 p 2 α 2 ⋯ p k α k , p 1 < p 2 < ⋯ < p k n={p_1}^{\alpha_1}{p_2}^{\alpha_2}\cdots{p_k}^{\alpha_k},p_1<p_2<\cdots<p_k n=p1α1p2α2⋯pkαk,p1<p2<⋯<pk And it's prime , α 1 , α 2 , ⋯ α k \alpha_1,\alpha_2,\cdots \alpha_k α1,α2,⋯αk It's a positive integer. .
-
set up d ( n ) d(n) d(n) by n n n Number of positive factors , ϕ ( n ) \phi(n) ϕ(n) by n n n The sum of all the factors of , Then there are
d ( n ) = ( α 1 + 1 ) ( α 2 + 1 ) ⋯ ( α k + 1 ) ϕ ( n ) = p 1 α 1 + 1 − 1 p 1 − 1 ⋅ p 2 α 2 + 1 − 1 p 2 − 1 ⋯ p k α k + 1 − 1 p k − 1 d(n)=(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_k+1)\\ \phi(n)=\frac{ {p_1}^{\alpha_1+1}-1}{p_1-1}·\frac{ {p_2}^{\alpha_2+1}-1}{p_2-1}\cdots\frac{ {p_k}^{\alpha_k+1}-1}{p_k-1} d(n)=(α1+1)(α2+1)⋯(αk+1)ϕ(n)=p1−1p1α1+1−1⋅p2−1p2α2+1−1⋯pk−1pkαk+1−1 -
set up a = ρ 1 r 1 ρ 2 r 2 ⋯ ρ k r k , b = ρ 1 s 1 ρ 2 s 2 ⋯ ρ k s k a={\rho_1}^{r_1}{\rho_2}^{r_2}\cdots {\rho_k}^{r_k},b={\rho_1}^{s_1}{\rho_2}^{s_2}\cdots {\rho_k}^{s_k} a=ρ1r1ρ2r2⋯ρkrk,b=ρ1s1ρ2s2⋯ρksk, be
gcd ( a , b ) = ρ 1 min ( r 1 , s 1 ) ρ 2 min ( r 2 , s 2 ) ⋯ ρ k min ( r k , s k ) lcm ( a , b ) = ρ 1 max ( r 1 , s 1 ) ρ 2 max ( r 2 , s 2 ) ⋯ ρ k max ( r k , s k ) \gcd(a,b)={\rho_1}^{\min(r_1,s_1)}{\rho_2}^{\min(r_2,s_2)}\cdots {\rho_k}^{\min(r_k,s_k)}\\ \text{lcm}(a,b)={\rho_1}^{\max(r_1,s_1)}{\rho_2}^{\max(r_2,s_2)}\cdots {\rho_k}^{\max(r_k,s_k)} gcd(a,b)=ρ1min(r1,s1)ρ2min(r2,s2)⋯ρkmin(rk,sk)lcm(a,b)=ρ1max(r1,s1)ρ2max(r2,s2)⋯ρkmax(rk,sk) -
n ! n! n! Prime number in prime factorization of p p p The power of is [ n p ] + [ n p 2 ] + ⋯ [\frac{n}{p}]+[\frac{n}{p^2}]+\cdots [pn]+[p2n]+⋯
Wilson's theorem
- if p p p Prime number , be ( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1) ! \equiv-1(\bmod p) (p−1)!≡−1(modp)
Fermat's small Theorem
-
If p p p It's a haunting number , And ( a , p ) = 1 (a, p)=1 (a,p)=1, that a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1(\bmod p) ap−1≡1(modp)
-
inference : if p p p Is prime and a a a It's a positive integer. , that a p ≡ a ( m o d p ) a^{p} \equiv a(\bmod p) ap≡a(modp)
Euler theorem
- Euler function φ ( n ) \varphi(n) φ(n) : No more than n n n And with the n n n The number of reciprocal positive integers , n n n Is a positive integer
- set up m m m Is a positive integer , a a a Is an integer ( a , m ) = 1 (a, m)=1 (a,m)=1, that a φ ( m ) ≡ a^{\varphi(m)} \equiv aφ(m)≡ 1 ( m o d m ) 1(\bmod m) 1(modm).
版权声明
本文为[default111]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204220611441222.html
边栏推荐
- 虚拟机磁盘空间缩小
- Vscode opens the applet and runs it to wechat developer tool wxml file compilation error
- Installer et modifier les chemins d'installation des plug - ins utools et vscode
- Prompt the user to enter his name, and the user will write his name to the file guest Txt program determines that when it is not equal to N, it executes to create the file data Txt, a total of 100000
- C语言 | 指针
- 单例池、单例Bean、单例模式
- 【数论】素数(二):素数筛法(埃式筛、欧拉筛、区间筛)
- Process of stepping on the pit in the flutter environment
- Define the class shape as the parent class, and define the method to calculate the perimeter and area in the class; (2) Define the shape subclass circle, with radius attribute and constant PI, and ove
- 搭建ES6开发环境,实时编译
猜你喜欢

Raspberry Pi 4b

JS realizes clicking avatar to upload picture modification

Shift left and right

(四)Sql Server中的字符集(排序规则)

定义类Shape作为父类,并在类中定义方法求周长和面积; (2)定义Shape子类圆形(circle),具有半径属性和常量PI,同时重写父类中的方法; (3)定义Shape子类长方形(rect

Suppose there is such a relationship between the weight and height of adults: height (CM) - 100 = standard weight (kg). If the difference between a person's weight and its standard weight is between p

Vscode, this is enough

JVM中唯一一个不会发生GC和OOM的存储区域

安裝和修改uTools及vscode插件安裝路徑

软件工程导论第六版复习(笔记)
随机推荐
Wechat third party web page authorization
(五) 使用Navicat创建数据库数据表并设置id自增
. net learning notes - about Net core (1) [. NETCORE's project structure, five ways to transfer values to pages, and the use of log4net and NLog]
Choose any novel website, crawl any novel and save it in the form of Notepad.
为什么非主键索引的叶子结点存放的数据是主键值
浙大版《C语言程序设计(第3版)》题目集 练习7-4 找出不是两个数组共有的元素
【数论】素数(一):基本概念、性质、猜想、定理
Wechat browser cannot save cookies for a long time
VSCode打开小程序运行到微信开发者工具WXML 文件编译报错
Define a student class 1 to get the student's name: get_ Name() return type: STR 2 get student's age: get_ Age() return type: int 3 returns the highest score among the three subjects. get_ course()
win10 anaconda安装cocotb
1. Compile the following three modules of student information management system: and detect the implementation. 1. Add student information 4. Query student information 5. Query all student information
单例池、单例Bean、单例模式
Help documents on log4net and NLog usage
我们常说的栈帧的内部结构是什么样的呢?
[DRC 23-20] Rule violation (REQP-1712) Input clock driver - Unsupported PLLE2_ADV connectivity.
ASP. Net daily development notes ---- export to excel
更新hdf之后无法找到接口映射
Error: (vlog-2892) Net type of 'i_yc422' must be explicitly declared.
win10修改命令行默认字体