当前位置:网站首页>动态规划/背包问题总结/小结——01背包、完全背包
动态规划/背包问题总结/小结——01背包、完全背包
2022-08-05 00:41:00 【耶耶耶耶耶~】
前言
背包问题也属于动态规划问题。
动态规划就是将复杂的大问题转化为一个小问题,然后将小问题转化为更小的容易求解的问题;通过将最小的容易求解的问题求解,进而一步步推导、求解出最后的结果。
背包问题分类:
动态规划五步法
- 确定dp数组的含义
- 确定递推公式
- 确定初始值
- 确定遍历顺序
- 手动推导dp数组的值,是否和程序结果一直
01背包模型

背包的容量为15kg,物品0~4的重量和价值分别为如图所示。
问背包能背的物品最大价值是多少?
| 项目 | Value | Weight |
|---|---|---|
| 物品0 | $4 | 12kg |
| 物品1 | $2 | 1kg |
| 物品2 | $10 | 4kg |
| 物品3 | $1 | 1kg |
| 物品4 | $2 | 2kg |
每一件物品其实只有两个状态,取或者不取,那么暴力法时间复杂度为O(2^n)。
1. 确定dp数组的含义
dp[i][j],当背包容量为j时,前 i+1 个物品参与放入背包,此时背包能背的物品的最大价值
2. 确定递推公式
背包容量是个常量。当物品 i 不放入背包时 dp[i][j] = dp[i-1][j];当物品 i 放入背包时dp[i][i] = dp[i-1][j-wi] + vi;
所以 dp[i][j] = max( dp[i-1][j], dp[i-1][j-wi]+vi )
3. 确定初始值
根据递推公式,需要确定i=0和j=0时的初值
4. 确定遍历顺序
根据5,本题对遍历顺序没有特别的要求
5. dp数组
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 物品0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 |
| 物品1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 6 | 6 | 6 |
| 物品2 | 0 | 2 | 2 | 2 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| 物品3 | 0 | 2 | 3 | 3 | 10 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
| 物品4 | 0 | 2 | 3 | 4 | 10 | 12 | 13 | 14 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
程序示例
vector<int> w = {
12,1,4,1,2};
vector<int> v = {
4,2,10,1,2};
int begWight = 15;
vector<vector<int>> dp(w.size(), vector<int>(begWight+1, 0));
for (int j=0;j<=begWight; ++j){
//dp数组初始化
if (w[0] <= j){
dp[0][j] = v[0];
}
}
//根据递推公式计算dp
for (int i=1; i<w.size(); ++i){
for (int j=1; j<=begWight; ++j){
if (j<w[i])
dp[i][j] = dp[i-1][j];
else
dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i]);
}
}
//打印dp
for (int i=0; i<dp.size(); ++i){
for (int j=0; j<dp[0].size(); ++j){
cout << dp[i][j] << " ";
}
cout << endl;
}
优化dp的维度
- 根据递推公式dp[i][j] = max( dp[i-1][j], dp[i-1][j-wi]+vi ),i取决于i-1,所以可以降二维dp降为一维度。
此时dp[j]的含义为容量为j的背包能背物品的最大价值。 - 递推公式变为:dp[j] = max(dp[j], dp[j-wi]+vi)
- dp数组初始化,全都为0就行
- 遍历顺序就有了要求,物品i在外部循环,背包的容量j在内部循环。j从大到小
for (int i=0; i<w.size(); ++i){
//先遍历物品
for (int j=begWight; j>=w[i]; --j){
//再遍历背包
dp[j] = max(dp[j], dp[j-w[i]]+v[i]);
}
}
- dp数组
当i=0; dp 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4
当i=1; dp 0 2 2 2 2 2 2 2 2 2 2 2 4 6 6 6
当i=2; dp 0 2 2 2 10 12 12 12 12 12 12 12 12 12 12 12
当i=3; dp 0 2 3 3 10 12 13 13 13 13 13 13 13 13 13 13
当i=4; dp 0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15
代码示例
vector<int > dp(begWight+1, 0);
// 以下for循环的遍历顺序及j的顺序不能变,思考如果变了会怎么样
for (int i=0; i<w.size(); ++i){
//先遍历物品
for (int j=begWight; j>=w[i]; --j){
//再遍历背包,从大到小
dp[j] = max(dp[j], dp[j-w[i]]+v[i]);
}
}
for (auto c:dp){
cout << c<< " ";
}
备注
关于4.一维dp数组的遍历顺序大有讲究,可仔细研究。
当先遍历背包后遍历物品时(j从大到小,i从小到大),每个dp[j]就只会放入一个物品。
当先遍历物品再遍历背包(i从小到大,j从小到大),dp[j]中同一个物品会被放入多次,不符合01背包原则。
完全背包
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
例如:
| W | V | |
|---|---|---|
| 物品0 | 1 | 15 |
| 物品1 | 3 | 20 |
| 物品2 | 4 | 30 |
- dp[j]代表容量为j的背包能背物品的最大价值
- dp[j] = max(dp[j], dp[j-wi]+vi)
- 对于此题初始化为0就好
- 对于遍历顺序可小讨论下。完全背包就是物品可重复放入背包,因此遍历顺序为先遍历物品(i有小到大),再遍历背包(j由小到大)。
其实,先遍历背包再遍历物品也可。 - 略
程序示例
vector<int> weight = {
1, 3, 4};
vector<int> value = {
15, 20, 30};
int bagWeight = 4;
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) {
// 遍历物品
for(int j = weight[i]; j <= bagWeight; j++) {
// 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
总结
01背包模型是所有背包问题的基础。后面的完全背包,多重背包,都是在透彻理解01背包之后的进一步分析,理解了01背包,完全背包、多重背包就非常容易理解。
递推公式:
背包总价值:dp[j] = max(dp[j], dp[j - w[i]] + v[i])
装满背包:dp[j] += dp[j - nums[i]]
遍历顺序:
| 01背包 | 完全背包 | |
|---|---|---|
| 顺序问题 | 只有这一种顺序,先遍历物品(由到大)再遍历背包(有大到小) | 先遍历物品(由小到大)再遍历背包(有小到大),其实反过来也行 |
边栏推荐
- Software Testing Interview Questions: About Automated Testing Tools?
- 软件测试面试题:请你分别画出 OSI 的七层网络结构图和 TCP/IP 的四层结构图?
- 《WEB安全渗透测试》(28)Burp Collaborator-dnslog外带技术
- 电赛必备技能___定时ADC+DMA+串口通信
- D - I Hate Non-integer Number (选数的计数dp
- ORA-00257
- ora-01105 ora-03175
- node uses redis
- About I double-checked and reviewed the About staff page, returning an industry question
- 倒计时1天!8月2日—4日与你聊聊开源与就业那些事!
猜你喜欢
随机推荐
2022 Multi-school Second Session K Question Link with Bracket Sequence I
oracle create user
软件测试面试题:网络七层协仪具体?
MBps与Mbps区别
软件测试面试题:黑盒测试、白盒测试以及单元测试、集成测试、系统测试、验收测试的区别与联系?
Mysql_12 多表查询
软件测试面试题:关于自动化测试工具?
2022 The Third J Question Journey
The method of freely controlling concurrency in the sync package in GO
软件测试面试题:测试用例通常包括那些内容?
克服项目管理中恐惧心理
MongoDB搭建及基础操作
Software Testing Interview Questions: Qualifying Criteria for Software Acceptance Testing?
EL定时刷新页面中的皕杰报表实例
Software Testing Interview Questions: What do you think about software process improvement? Is there something that needs improvement in the enterprise you have worked for? What do you expect the idea
The principle of NMS and its code realization
"WEB Security Penetration Testing" (28) Burp Collaborator-dnslog out-band technology
could not build server_names_hash, you should increase server_names_hash_bucket_size: 32
tiup uninstall
QSunSync Qiniu cloud file synchronization tool, batch upload









