当前位置:网站首页>7_ The cell type scores obtained by addmodule and gene addition method are compared in space
7_ The cell type scores obtained by addmodule and gene addition method are compared in space
2022-04-23 13:01:00 【qq_ fifty-two million eight hundred and thirteen thousand one h】
7_Addmodule And gene addition add The cell type scores obtained are compared in space
library(ggplot2)
library(ggalluvial)
library(svglite)
library(Seurat)
library(openxlsx)
library(tibble)
library(ggpubr)
path = "G:/silicosis/sicosis/silicosis_ST/overlapped_map/contrast_between_addmodule_and addtion"
dir.create(path)
setwd(path)
getwd()
marker=read.xlsx('G:/silicosis/sicosis/yll/macrophage/no cluster2/0.3/pure_cluster01345_dotplot/cluster01345.xlsx')
#marker=read.xlsx("D:/Win10 System/Desktop/singlecell _marker.xlsx",sheet=1)
head(marker)
#names(marker) = c("B cell", "AT", "Fib", "Endo", "neutrophil", "Cycling base", "T", "Mono", "Macro")
colnames(marker)
load("G:/silicosis/ demand / silicosis - Data analysis results -0308_yll/ silicosis - Data analysis results -0308/NS_7_sct.rds")
load("G:/silicosis/ demand / silicosis - Data analysis results -0308_yll/ silicosis - Data analysis results -0308/NS_56_sct.rds")
load("G:/silicosis/ demand / silicosis - Data analysis results -0308_yll/ silicosis - Data analysis results -0308/sio2_7_sct.rds")
load("G:/silicosis/ demand / silicosis - Data analysis results -0308_yll/ silicosis - Data analysis results -0308/sio2_56_sct.rds")
load()
library(dplyr)
library(Hmisc)
# With ciliated As an example
marker
names(marker)
marker$`cluster1_AM`
cellname="cluster1_AM"
mymarker=na.omit(unique(marker$"cluster1_AM")) %>% capitalize() %>% as.character() %>%list()
mymarker
length(mymarker) # Look at how many genes there are
length(mymarker) # Look at how many genes there are
# Or use random functions directly to get
number=c(1:5) # For naming , Set it according to the size of the sample
number
cellname # For naming
mymarker
library(ggpubr)
library(ggplot2)
# The sum of simple genes adds up
for (i in 1:6) {
# The number of cycles should preferably be determined by the total mymarker number length(mymarkers) decision
markers=sample(mymarker,size=5) # The sample size must be less than length(mymarkers)
#markers=mymarker[i]
number=c(1:length(markers))
print(paste0(" The first ",i," Time :",markers,collapse=";"))
if (1==1){
#ns_7d
#markers = rownames(NS_7_sct)[number]## input markes
expr = colMeans(NS_7_sct@assays$SCT@scale.data[markers, ])
NS_7_sct@assays$SCT@scale.data[markers[1], ] = expr
p1=SpatialFeaturePlot(NS_7_sct, features = markers[1], slot = "scale.data")+
ggtitle(paste(markers, collapse = "|"))
#ns_56d
#markers = rownames(NS_56_sct)[number]## input markes
expr = colMeans(NS_56_sct@assays$SCT@scale.data[markers, ])
NS_56_sct@assays$SCT@scale.data[markers[1], ] = expr
p2 = SpatialFeaturePlot(NS_56_sct, features = markers[1], slot = "scale.data") +
ggtitle(paste(markers, collapse = "|"))
#sio2_7d
#markers = rownames(sio2_7_sct)[number]## input markes
expr = colMeans(sio2_7_sct@assays$SCT@scale.data[markers, ])
sio2_7_sct@assays$SCT@scale.data[markers[1], ] = expr
p3 = SpatialFeaturePlot(sio2_7_sct, features = markers[1], slot = "scale.data")+
ggtitle(paste(markers, collapse = "|"))
#sio2_56d
#markers = rownames(sio2_56_sct)[number]## input markes
expr = colMeans(sio2_56_sct@assays$SCT@scale.data[markers, ])
sio2_56_sct@assays$SCT@scale.data[markers[1], ] = expr
p4 = SpatialFeaturePlot(sio2_56_sct, features = markers[1], slot = "scale.data")+
ggtitle(paste(markers, collapse = "|"))
#ggarrange(p1,p2,p3,p4,ncol = 2,nrow =2)
jpeg(paste0(cellname,"_","total_",length(mymarker),"_",paste0(min(number),"-",max(number)),
paste(markers,collapse = "_"),"_.jpeg"),
height = 12, width = 12, units = 'in', res=300)
p=ggarrange(p1,p2,p3,p4,ncol = 2,nrow =2)
print(p)
dev.off()
}
}
getwd()
# The sum of genes adds up addmodule
DefaultAssay(NS_7_sct)
for (i in 1) {
# The number of cycles should preferably be determined by the total mymarker number length(mymarkers) decision
markers=sample(mymarker,size=6,replace = FALSE) # The sample size must be less than length(mymarkers)
#markers=mymarker[i]
number=c(1:length(markers))
print(paste0(" The first ",i," Time :",markers,collapse=";"))
if (1==1){
#ns_7d
#markers = rownames(NS_7_sct)[number]## input markes
expr = colMeans(NS_7_sct@assays$SCT@scale.data[markers, ])
NS_7_sct@assays$SCT@scale.data[markers[1], ] = expr
p1=SpatialFeaturePlot(NS_7_sct, features = markers[1], slot = "scale.data")+
ggtitle(paste(markers, collapse = "|"))
#ns_7d addmodule
if(1==1){
markerlist=list(markers)
NS_7_sct=AddModuleScore(NS_7_sct,
features =markerlist,
name = "markerlist")
# The results are saved here
colnames(NS_7_sct@meta.data)
head(NS_7_sct@meta.data)
colnames(NS_7_sct@meta.data)[7]<-"markerlist"
p1addmodule=SpatialFeaturePlot(NS_7_sct, features = "markerlist", slot = "scale.data")+
ggtitle(paste(unlist(markerlist), collapse = "|"))
NS_7_sct@meta.data<-NS_7_sct@meta.data[,-7]
}
#ns_56d
#markers = rownames(NS_56_sct)[number]## input markes
expr = colMeans(NS_56_sct@assays$SCT@scale.data[markers, ])
NS_56_sct@assays$SCT@scale.data[markers[1], ] = expr
p2 = SpatialFeaturePlot(NS_56_sct, features = markers[1], slot = "scale.data") +
ggtitle(paste(markers, collapse = "|"))
#ns_56d addmodule
if(1==1){
markerlist=list(markers)
NS_56_sct=AddModuleScore(NS_56_sct,
features =markerlist,
name = "markerlist")
# The results are saved here
colnames(NS_56_sct@meta.data)
head(NS_56_sct@meta.data)
colnames(NS_56_sct@meta.data)[7]<-"markerlist"
p2addmodule=SpatialFeaturePlot(NS_56_sct, features = "markerlist", slot = "scale.data")
NS_56_sct@meta.data<-NS_56_sct@meta.data[,-7]
}
#sio2_7d
#markers = rownames(sio2_7_sct)[number]## input markes
expr = colMeans(sio2_7_sct@assays$SCT@scale.data[markers, ])
sio2_7_sct@assays$SCT@scale.data[markers[1], ] = expr
p3 = SpatialFeaturePlot(sio2_7_sct, features = markers[1], slot = "scale.data")+
ggtitle(paste(markers, collapse = "|"))
#sio2_7d addmodule
if(1==1){
markerlist=list(markers)
sio2_7_sct=AddModuleScore(sio2_7_sct,
features =markerlist,
name = "markerlist")
# The results are saved here
colnames(sio2_7_sct@meta.data)
head(sio2_7_sct@meta.data)
colnames(sio2_7_sct@meta.data)[7]<-"markerlist"
p3addmodule=SpatialFeaturePlot(sio2_7_sct, features = "markerlist", slot = "scale.data")+
ggtitle(paste(cellname))
sio2_7_sct@meta.data<-sio2_7_sct@meta.data[,-7]
}
#sio2_56d
#markers = rownames(sio2_56_sct)[number]## input markes
expr = colMeans(sio2_56_sct@assays$SCT@scale.data[markers, ])
sio2_56_sct@assays$SCT@scale.data[markers[1], ] = expr
p4 = SpatialFeaturePlot(sio2_56_sct, features = markers[1], slot = "scale.data")+
ggtitle(paste(markers, collapse = "|"))
#ggarrange(p1,p2,p3,p4,ncol = 2,nrow =2)
#sio2_56d addmodule
if(1==1){
markerlist=list(markers)
sio2_56_sct=AddModuleScore(sio2_56_sct,
features =markerlist,
name = "markerlist")
# The results are saved here
colnames(sio2_56_sct@meta.data)
head(sio2_56_sct@meta.data)
colnames(sio2_56_sct@meta.data)[7]<-"markerlist"
p4addmodule=SpatialFeaturePlot(sio2_56_sct, features = "markerlist", slot = "scale.data")+
ggtitle(paste(unlist(markerlist), collapse = "|"))
sio2_56_sct@meta.data<-sio2_56_sct@meta.data[,-7]
}
#addition
jpeg(paste0(cellname,"_","total_",length(mymarker),"_",paste0(min(number),"-",max(number)),
paste(markers,collapse = "_"),"_.jpeg"),
height = 12, width = 12, units = 'in', res=300)
p=ggarrange(p1,p2,p3,p4,ncol = 2,nrow =2)
print(p)
dev.off()
#addmodule
jpeg(paste0(cellname,"_","total_",length(unlist(markerlist)),"_",paste0(min(number),"-",max(number)),
paste(unlist(markerlist)[1:15],collapse = "_"),"_.jpeg"), # Take only before 15 individual
height = 12, width = 12, units = 'in', res=600)
p=ggpubr::ggarrange(p1addmodule,p2addmodule,p3addmodule,p4addmodule,ncol = 2,nrow =2)
print(p)
dev.off()
}
}
while (dev.off()) {
dev.off()
}
getwd()
# Determine whether the gene is in idle
for (each in mymarker) {
if (each %in% c(rownames(NS_7_sct@assays$SCT@scale.data),
rownames(NS_56_sct@assays$SCT@scale.data),
rownames(sio2_7_sct@assays$SCT@scale.data),
rownames(sio2_56_sct@assays$SCT@scale.data)
)==FALSE)
print(paste0(each," No... Detected in idle data "))
if (each %in% c(rownames(NS_7_sct@assays$SCT@scale.data))==FALSE)
print(paste0(each," Not in NS_7 Idle data detected "))
if (each %in% c(rownames(NS_56_sct@assays$SCT@scale.data))==FALSE)
print(paste0(each," Not in NS_56 Idle data detected "))
if (each %in% c(rownames(sio2_7_sct@assays$SCT@scale.data))==FALSE)
print(paste0(each," Not in sio2_7 Idle data detected "))
if (each %in% c(rownames(sio2_56_sct@assays$SCT@scale.data))==FALSE)
print(paste0(each," Not in sio2_56 Idle data detected "))
} # Determine whether the gene is in idle
版权声明
本文为[qq_ fifty-two million eight hundred and thirteen thousand one h]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204231258305883.html
边栏推荐
- 31. Next arrangement
- Importerror after tensorflow installation: DLL load failed: the specified module cannot be found, and the domestic installation is slow
- Go iris framework implements multi service Demo: start (listen to port 8084) service 2 through the interface in service 1 (listen to port 8083)
- jmeter操作redis
- How to prevent the website from being hacked and tampered with
- HQL statement tuning
- Servlet监听器&过滤器介绍
- 如何实现点击一下物体播放一次动画
- Record some NPM related problems (messy records)
- Important knowledge of network layer (interview, reexamination, term end)
猜你喜欢

世界读书日:我想推荐这几本书

Kubernets Getting started tutoriel

About the 'enum' enumeration type and structure.

Redis deployment of cloud native kubesphere

Sort out several uses of network IP agent

World Book Day: I'd like to recommend these books

云原生KubeSphere部署Redis

Record a website for querying compatibility, string Replaceall() compatibility error

SSM框架系列——数据源配置day2-1

Teach you to quickly develop a werewolf killing wechat applet (with source code)
随机推荐
Introduction to kubernetes
Translation of attention in natural language processing
Go language array operation
There is no need to crack the markdown editing tool typora
CGC: contractual graph clustering for community detection and tracking
有趣的IDEA插件推荐,给你的开发工作增添色彩
SSM framework series - JUnit unit test optimization day2-3
Redis deployment of cloud native kubesphere
The project file '' has been renamed or is no longer in the solution, and the source control provider associated with the solution could not be found - two engineering problems
leetcode-791. 自定义字符串排序
Wu Enda's programming assignment - logistic regression with a neural network mindset
Kubernets Getting started tutoriel
Free and open source charging pile Internet of things cloud platform
Use source insight to view and edit source code
内核错误: No rule to make target ‘debian/canonical-certs.pem‘, needed by ‘certs/x509_certificate_list‘
Remote access to raspberry pie at home (Part 1)
Date time type in database
MySQL —— 16、索引的数据结构
数据库中的日期时间类型
Kubernetes 入門教程