当前位置:网站首页>Introduction to the delta method
Introduction to the delta method
2022-08-10 06:54:00 【Coco-Lele】
一、什么是delta方法
众所周知,当一个变量 X X X服从正态分布时,Its linear transformation also obeys the normal distribution.What about nonlinear transformations??
delta方法提出,It is obtained by transforming the differentiable function g ( X ) g(X) g(X)Still the probability tends to be normally distributed,and provides expectations、方差的计算公式.
单变量 X X X 变换为 g ( X ) g(X) g(X),对 g ( X ) g(X) g(X)泰勒展开:
g ( X ) ≈ g ( θ ) + g ′ ( θ ) ( X − θ ) g(X) \approx g(\theta) + g'(\theta)(X - \theta) g(X)≈g(θ)+g′(θ)(X−θ)
g ( X ) − g ( θ ) ≈ g ′ ( θ ) ( X − θ ) → ν N ( 0 , σ 2 ∗ [ g ’ ( θ ) ] 2 ) g(X) - g(\theta) \approx g'(\theta)(X - \theta) \overset{\nu }{\rightarrow} N(0, \sigma^2 * [g’(\theta)]^2) g(X)−g(θ)≈g′(θ)(X−θ)→νN(0,σ2∗[g’(θ)]2)
g ( θ ) g(\theta) g(θ)为常数,故 g ( X ) → N ( 0 , σ 2 ∗ [ g ′ ( θ ) ] 2 ) g(X) {\rightarrow} N(0, \sigma^2 * [g'(\theta)]^2) g(X)→N(0,σ2∗[g′(θ)]2)
Multivariate transformation can also get the expectation and variance of the distribution,Often used to calculate the quotient of two random variables Y X \frac{Y}{X} XYThe distribution and the variance
E ( Y X ) = E ( Y ) E ( X ) E(\frac{Y}{X})=\frac{E(Y)}{E(X)} E(XY)=E(X)E(Y)
v a r ( Y X ) = v a r ( X ) Y 2 + X 2 v a r ( Y ) Y 4 − 2 X c o v ( X , Y ) Y 3 var(\frac{Y}{X})=\frac{var(X)}{Y^2}+\frac{X^2var(Y)}{Y^4}-2\frac{Xcov(X,Y)}{Y^3} var(XY)=Y2var(X)+Y4X2var(Y)−2Y3Xcov(X,Y)
二、应用背景
AB测试中的Randomized shunt unit(Randomization Unit)和指标的分析单元(Analysis Unit) 不同时.Central limit theorem requirements between the sample points are independent.ABThe triage unit in the experiment is the user,user-to-user independence.
- “人均”The analytical unit of the type indicator is the user,The value of each user is X 1 X_1 X1, X 2 X_2 X2, X 3 X_3 X3…互相独立,此时 X ˉ \bar{X} Xˉ可以用 z z z检验.
- The unit of analysis for click-through rate is“每次曝光”,That is, averaging over the number of impressions,The sample point is X 11 X_{11} X11, X 12 X_{12} X12, X 13 X_{13} X13…, X i j X_{ij} Xijcan be regarded as the first i i i个用户第 j j jWhether or not to click on a second impression,Multiple exposures are not independent of each other,无法用 z z z检验.
解决方法:Divided by the number of molecules in the denominator at the same time n n n,使用delta检验,得到 c t r ˉ \bar{ctr} ctrˉ服从正态分布,and the mean and variance can be obtained.Calculating variance requires per capita hits/Mean and variance of exposure per capita、and the covariance of clicks per capita and impressions per capita.
and then calculate the statistics
参考文献
https://www.jianshu.com/p/917dc1584452
https://toutiao.io/posts/q660w08/preview
边栏推荐
- PLSQL学习第三天
- Bigder:42/100 showCase多少bug可以打回去
- Everyone, the default configuration of oracle cdc occasionally takes 30 seconds to capture data. How to optimize this?
- About MongoDb query Decimal128 to BigDecimal problem
- ESP32 485风速
- WooCommerce 安装和 rest api 使用
- Log4j2基本使用
- [Network Security] Practice AWVS Range to reproduce CSRF vulnerability
- 【强化学习】《Easy RL》- Q-learning - CliffWalking(悬崖行走)代码解读
- 腾讯云宋翔:Kubernetes集群利用率提升实践
猜你喜欢
随机推荐
调试ZYNQ的u-boot 2017.3 不能正常启动,记录调试过程
卷积神经网络卷积层公式,卷积神经网络运算公式
人工神经网络工作原理,神经网络的工作原理
Deep understanding of the array
个人博客系统
Basic use of Log4j2
2022 Henan Mengxin League No. 5: University of Information Engineering J-AC Automata
2022 Henan Mengxin League Game (5): University of Information Engineering K - Matrix Generation
MySQL database monthly growth problem
关于MongoDb查询Decimal128转BigDecimal问题
PLSQL学习第二天
C语言文件操作
1413. Stepwise Summation to Get Minimum Positive Numbers
腾讯云宋翔:Kubernetes集群利用率提升实践
【愚公系列】2022年08月 Go教学课程 034-接口和多态
BUUCTF Notes (web)
JS中初始化对象为null和空对象的区别
mysql之两阶段提交
Grammar Basics (Judgment Statements)
英国国家卫生服务遭受攻击,系统出现大面积故障