当前位置:网站首页>Statistical inference
Statistical inference
2022-04-22 13:41:00 【PD, I'm your true love fan】
Statistical inference -- Panden's econometric notes
List of articles
Inspection of single overall parameters
t test
Inspection steps
- The null hypothesis H 0 : β j = 0 H_0: \beta_j=0 H0:βj=0
- Determine significance level α \alpha α
- Calculation t statistic
t ≡ β j ^ − 0 s e ( β j ^ ) t \equiv \frac{\hat{\beta_j}-0}{se(\hat{\beta_j})} t≡se(βj^)βj^−0
Among them β j = ρ x y ^ σ x ^ σ y ^ ( One element love shape ) , β = ( X T X ) − 1 X T Y ( many element love shape ) ; s e ( β j ^ ) = σ ^ S S T x ( One element love shape ) , σ ^ = S S R n − 2 \beta_j=\hat{\rho_{xy}}\frac{\hat{\sigma_x}}{\hat{\sigma_y}}( Unitary case ),\beta = (X^TX)^{-1}X^TY( Multiple situations ); se(\hat{\beta_j}) = \frac{\hat{\sigma}}{\sqrt{SST_x}}( Unitary case ),\hat{\sigma}=\frac{SSR}{n-2} βj=ρxy^σy^σx^( One element love shape ),β=(XTX)−1XTY( many element love shape );se(βj^)=SSTxσ^( One element love shape ),σ^=n−2SSR - Determine the critical value t α 2 ( n − k − 1 ) double Side , t α ( n − k − 1 ) single Side t_{\frac{\alpha}{2}}(n-k-1) On both sides ,t_{\alpha}(n-k-1) Unilateral t2α(n−k−1) double Side ,tα(n−k−1) single Side
- Make an inference , If t If the statistic is greater than the critical value, the original hypothesis is rejected , Otherwise, I won't refuse
p Value method
In addition to comparing with the critical value , You can also directly calculate t Statistical p value , For both sides
p = P ( ∣ t j ∣ > ∣ t α 2 ( n − k − 1 ) ∣ ) p = P(|t_j|>|t_{\frac{\alpha}{2}}(n-k-1)|) p=P(∣tj∣>∣t2α(n−k−1)∣)
P The smaller the value, the more rejected ,P Once the value is less than the significance level, reject the original hypothesis
confidence interval approach
Inspection steps
- The null hypothesis H 0 : β j = 0 H_0: \beta_j=0 H0:βj=0
- Determine significance level α \alpha α
- utilize β j ^ − β j s e ( β j ^ ) \frac{\hat{\beta_j}-\beta_j}{se(\hat{\beta_j})} se(βj^)βj^−βj Obey the degree of freedom as n-k-1 Of t The fact of distribution , Construct confidence intervals
[ β j ^ − t α 2 ( n − k − 1 ) s e ( β j ^ ) , β j ^ + t α 2 ( n − k − 1 ) s e ( β j ^ ) ] [\hat{\beta_j} - t_{\frac{\alpha}{2}}(n-k-1)se(\hat{\beta_j}), \hat{\beta_j} + t_{\frac{\alpha}{2}}(n-k-1)se(\hat{\beta_j})] [βj^−t2α(n−k−1)se(βj^),βj^+t2α(n−k−1)se(βj^)] - Make statistical inferences , If the confidence interval is trapped 0, Then don't reject the original hypothesis , Otherwise, reject the original hypothesis
Be careful For one 95% confidence interval , If you don't reject the original hypothesis , Can you say that he is 95% The probability of contains the truth ?
You can't , The confidence interval either contains a true value or does not contain a true value ,95% It's just that 100 Next time , Yes 95 Times contain truth values
Test of multiple linear constraints
F test
Inspection steps
- The null hypothesis H 0 : β 3 = 0 , β 4 = 0 , β 5 = 0 , … H_0: \beta_3=0,\beta_4=0,\beta_5=0,\ldots H0:β3=0,β4=0,β5=0,…
- Determine significance level α \alpha α
- structure F statistic , Constrained models are used respectively ( Removed x 3 , x 4 , x 5 , … x_3,x_4,x_5,\ldots x3,x4,x5,…) And unconstrained models ( The original model )
F ≡ S S R r − S S R u r S S R u r ⋅ n − k − 1 q F \equiv \frac{SSR_r - SSR_{ur}}{SSR_{ur}} \cdot \frac{n-k-1}{q} F≡SSRurSSRr−SSRur⋅qn−k−1
among q by x 3 , x 4 , x 5 , … x_3,x_4,x_5,\ldots x3,x4,x5,… The number of - Determine the critical value F α ( q , n − k − 1 ) ( only Yes single Side ) F_{\alpha}(q,n-k-1)( Only one side ) Fα(q,n−k−1)( only Yes single Side )
- Make statistical inferences , Reject the original hypothesis once it is greater than the critical value , Otherwise, I won't refuse
F Tested R 2 R^2 R2
F Statistics can also be written in the following form
F = R u r 2 − R r 2 1 − R u r 2 ⋅ n − k − 1 q F = \frac{R^2_{ur}-R^2_{r}}{1-R^2_{ur}} \cdot \frac{n-k-1}{q} F=1−Rur2Rur2−Rr2⋅qn−k−1
among R u r 2 R^2_{ur} Rur2 It's from the original model R 2 R^2 R2
adjustment R 2 R^2 R2
Besides using F Test to select nested models , You can also use to adjust R 2 R^2 R2 For non nested models ( Of course, nested models can also ) Make a selection
R ˉ 2 = 1 − S S R S S T ⋅ n − 1 n − k − 1 \bar{R}^2 = 1 - \frac{SSR}{SST} \cdot \frac{n-1}{n-k-1} Rˉ2=1−SSTSSR⋅n−k−1n−1
It can also be based on R 2 R^2 R2 To calculate
R ˉ 2 = 1 − ( 1 − R 2 ) ⋅ n − 1 n − k − 1 \bar{R}^2 = 1 - (1-R^2)\cdot \frac{n-1}{n-k-1} Rˉ2=1−(1−R2)⋅n−k−1n−1
p Value method
F Inspection can also be done with P Value method , Consistent with the above operation
The regression is significant as a whole
Specially , When all parameters are included in the original assumption β 1 , ⋯ , β k \beta_1,\cdots,\beta_k β1,⋯,βk when , That is to test whether all explanatory variables explain the explained variables ( perhaps R 2 R^2 R2 Significantly different from 0 When )
F = R 2 1 − R 2 ⋅ n − k − 1 k F = \frac{R^2}{1-R^2} \cdot \frac{n-k-1}{k} F=1−R2R2⋅kn−k−1
Large sample test
It should be noted that : Ahead t Test and F Inspection is to meet MLR.1-5 Hypothetical , One of the important assumptions is the same variance , Once the same variance is not satisfied, it is no longer applicable ; But it still applies in large samples , In addition, there are Lagrange multipliers (LM) statistic
Joint test LM statistic
Inspection steps
- The null hypothesis H 0 : β 3 = 0 , β 4 = 0 , β 5 = 0 , … H_0: \beta_3=0,\beta_4=0,\beta_5=0,\ldots H0:β3=0,β4=0,β5=0,…
- take y The independent variables after excluding constraints are regressed , And save the residuals u ~ \tilde{u} u~
- take u ~ \tilde{u} u~ All independent variables were regressed , obtain R 2 R^2 R2, Write it down as R u 2 R^2_u Ru2
- Calculation LM statistic
L M = n R u 2 LM = n R^2_u LM=nRu2 - According to the significance level α \alpha α, Determine the critical value χ α 2 ( q ) \chi_{\alpha}^2(q) χα2(q)
- LM If the statistic is greater than the critical value, reject , Otherwise, I won't refuse
版权声明
本文为[PD, I'm your true love fan]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204221339368225.html
边栏推荐
- Qt5的QDialog 去除右上角的问号、添加最大化和最小化按钮
- EnvironmentPostProcessor怎么做单元测试?阿里P7解答
- After talking about the difference between stack and queue, the interviewer threw up on the spot. Students should take warning.
- How to turn on self-monitoring of Apache skywalking?
- Partition - elegant violence
- SixTool多功能多合一代挂助手系统源码
- Redis(六)-Redis的常用数据类型之Set集合
- The vscode database calls the stored procedure and unrecognized data appears
- 【Zeekr_Tech】ROS/ROS 2介绍
- Knowledge to be learned
猜你喜欢

FreeRTOS quick start

智汀如何连接小米智能音箱?

Harbor V2. 5 Mise à jour, quelles fonctions ont été ajoutées?
![[zeekr_tech] Introduction to ros/ros 2](/img/96/351ae626951cfb016146aa52ff7f32.png)
[zeekr_tech] Introduction to ros/ros 2
思皓X6安全配置信息曝光 将搭载自适应巡航

“开源之夏”活动火热报名中,丰厚奖金等你来拿

linux下redis6.详细安装

Harbor v2.5更新,都增加了哪些功能?

Applet to share with friends list and circle of friends

Database resource load management (Part 2)
随机推荐
关于chartjs 屏幕大小自适应
提供信贷支持、创新金融产品……广州金融机构为交通等行业企业纾困解难
Summary of maximum matching number, minimum path coverage number, maximum independent number and minimum point coverage number theorems
PM4PY - BPMN support
Encapsulate unified response result enumeration class (tool module)
Citrix SQL数据如何进行多表联查
翻译翻译什么是适配器模式?
io_uring技术在分布式云原生数据库中的应用
[live broadcast attack] the oneos system tutorial is fully launched. We invite you to study with ST and oneos!
HDU 2544 Dijkstra(模板)
Fast crosstalk -- partition of JVM memory
线程池中的阻塞队列有哪几种?
Pm4py - analyze what BPMN can be converted into process tree
【Flutter 专题】91 图解 Dart 单线程实现异步处理之 Future (二) #yyds干货盘点#
Network configuration in NAT mode after VMware virtual machine cloning
如何开启Apache SkyWalking的自监控?
C# 7.0 使用下划线忽略使用的变量
Algorithm --- reverse linked list (kotlin)
华为云媒体査勇:华为云在视频AI转码领域的技术实践
MySQL DNS resolution and host cache