当前位置:网站首页>A list of the latest changes in Mandelbrot set -- mandelbox, mandelbulb, burning ship, nebulabrot
A list of the latest changes in Mandelbrot set -- mandelbox, mandelbulb, burning ship, nebulabrot
2022-04-21 23:41:00 【delacrxoix_ xu】
A two-dimensional Mandelbrot Set ——Burning Ship
Use the following iterative formula
(x4-6*x2*y2+y4, 4*|x|3*|y|-4*|y|3*|x|)
Cannot read , You can study further ...
Mandelbulb
This 3D Of Mandelbrot The set uses the following formula , This should be a kind of super complex number , said “triplex”, Ternary complex
Mathematically N Power
![]()
among :

In general ,n take 8.
In a nutshell , The computer expression of the square of a ternary complex number is
xx = (x*x+y*y) * (1-z*z/(x*x+y*y));
yy = 2*x*y * (1-z*z/(x*x+y*y));
zz = -2*z*sqrt(x*x+y*y);
For details, see http://en.wikipedia.org/wiki/Mandelbulb
The following is excerpted from http://www.skytopia.com/project/fractal/2mandelbulb.html
{x,y,z}^n = r^n { sin(theta*n) * cos(phi*n) , sin(theta*n) * sin(phi*n) , cos(theta*n) }
...where:
r = sqrt(x^2 + y^2 + z^2)
theta = atan2( sqrt(x^2+y^2), z )
phi = atan2(y,x)
And the addition term in z -> z^n + c is similar to standard complex addition, and is simply defined by:
{x,y,z}+{a,b,c} = {x+a, y+b, z+c}
The rest of the algorithm is similar to the 2D Mandelbrot!
Here is some pseudo code of the above:r = sqrt(x*x + y*y + z*z )
theta = atan2(sqrt(x*x + y*y) , z)
phi = atan2(y,x)
newx = r^n * sin(theta*n) * cos(phi*n)
newy = r^n * sin(theta*n) * sin(phi*n)
newz = r^n * cos(theta*n)
...where n is the order of the 3D Mandelbulb. Use n=8 to find the exact object in this article.

Above, 16 Step MandelbrotBulb

Zoom in on a part

take n=8 Graphics at that time

The number of iterations is taken as 100 The situation at that time

“ Golden Grand Canyon ”

“ Mysterious cave ”

“ Magic ball cabbage ”

“Mandelbrot The garden ”

Eighth order MandelBulb

Christmas coral ball

Ice cream ~~

shell ~~

“ Frozen hell ”
3D Of Mandelbrot Set ——Mandelbox
A wonderful video demonstration .“ Fly over the Mandelbrot box ”
http://wimp.com/mandelboxflythrough/
Specific algorithm core code :
for (each axis) if (v[axis]>1) v[axis] = 2-v[axis]; else if (v[axis]<-1) v[axis] = -2-v[axis]; if (v.magnitude() < 0.5) v *= 4; else if (v.magnitude() < 1) v /= square(v.magnitude()); v = scale*v + c;
For details, see “ Hypercomplex fractal ”
http://www.bugman123.com/Hypercomplex/index.html
n = 100; norm[x_] := x.x;
TriplexPow[{x_, y_, z_}, n_] := If[x == y == 0.0, 0.0, Module[{r = Sqrt[x^2 + y^2 + z^2], theta = n ArcTan[x, y], phi}, phi = n ArcSin[z/r];
r^n{Cos[theta]Cos[phi], Sin[theta]Cos[phi], -Sin[phi]}]];
Mandelbulb[c_] := Module[{p = {0, 0, 0}, i = 0}, While[i < 24 && norm[p] < 4, p = TriplexPow[p, 8] + c; i++]; i];
image = Table[z = 1.1; While[z >= -0.1 && Mandelbulb[{x, y, z}] < 24, z -= 2.2/n];
z, {y, -1.1, 1.1, 2.2/n}, {x, -1.1, 1.1, 2.2/n}];
ListDensityPlot[image, Mesh -> False, Frame -> False, PlotRange -> {-0.1, 1.1}]
Above, Lambdabulb
The iterative formula used in the figure above :{x,y,z}2 = {x2-y2-z2, 2xy, -2xz}
The figure above is quaternion Mandelbrot Set , The iterative formula used :{x,y,z,w}2 = {x2-y2-z2-w2, 2xy, 2xz, 2xw}

The picture above is called Glynn Julia set

The two pictures above are 4D Bicomplex Mandelbrot Set ("Tetrabrot")
The iterative formula used :{x,y,z,w}2 = {x2-y2-z2+w2, 2(xy-zw), 2(xz-yw), 2(xw+yz)}

The above three pictures are called NebulaBrot, yes BuddhaBrot Three dimensional form of
These figures are made up of 20 100 million points are calculated and rendered

The picture above is called 3D Christmas Tree Mandelbrot Set, The iterative formula used :
{x,y,z}n = rn{cos(θ)cos(φ), sin(θ)cos(φ), sin(φ)}
r=sqrt(x2+y2+z2), θ=n atan2(y,x), φ=n atan2(z,x)

{x,y,z}n = rn{cos(θ)cos(φ), sin(θ)cos(φ), cos(θ)sin(φ)}
r=sqrt(x2+y2+z2), θ=n atan2(y,x), φ=n sin-1(z/r)
The picture above is called "Roundy" Mandelbrot Set . Iterative formula :
{x,y,z,w}2 = {x2-y2-z2-w2, 2(xy+zw), 2(xz+yw), 2(xw+yz)}

Above, Bristorbrot Set
The iterative formula used :{x,y,z}2 = {x2-y2-z2,y(2x-z),z(2x+y)}

The iterative formula used in the figure above :{x,y,z}2 = {x2-y2-z2, 2xy, 2(x-y)z}
author David Makin
版权声明
本文为[delacrxoix_ xu]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204212001344040.html
边栏推荐
猜你喜欢

Amazing, 4 high-quality software full of surprises, feel more comfortable to use

JMeter association parameters

340-Leetcode 有效的字母异位词

DetNet: A Backbone network for Object Detection

There are Chinese characters in the input parameter, and an error of 500 is reported. There is an internal error in the server

Find the first prime number greater than x (day 42)

Necessary skills for large factory interview, Android audio and video framework

Developing Cami community system with ThinkPHP

7.10 线程条件变量

找出大于X的第一个质数(DAY 42)
随机推荐
[wrapper (1)]
leetcode:386. Dictionary order
分布式gns3
Robot OS驱动开发
Pytorch (V) -- Notes
The difference between IAAs, PAAS and SaaS
339 leetcode word rules
Electronic address book management system based on C
Textview tilt properties
BUUCTF 荷兰宽带数据泄露
solidworks按住CTRL,拖动复制实体
[source code] super detailed interpretation of linkedblockingqueue source code
leetcode:271. Encoding and decoding of strings
1143 longest common subsequence
C language for complete square
【acwing】1125. Cattle travel * * * (Floyd)
5. Network structure and ISP, packet delay, loss, throughput
warning: LF will be replaced by CRLF in composer. json.
找出大于X的第一个质数(DAY 42)
How JMeter sets parameterization









