Predicting Global Crop Yield for World Hunger

Overview

Project 5: Predicting Global Crop Yield for World Hunger

Problem Statement

You are a team of data scientists hand-picked by the United Nations in order to help come up with a machine learning model to help the UN reach its Zero-Hunger goal by 2030. Currently there are nearly 1 in 8 people who do not have enough food to lead a healthy life. 870 million people do not have enough food to eat. Currently there are 7.9 billion people on the planet. To make things more difficult, the global population has been increasing steadily and is expected to reach 8.5 billion people. Therefore, with some back-of-envelope calculations, you can see that in order to end world hunger by 2030, the UN needs to come up with a strategy for nearly 940 million people at the current rate or up to 1.5 billion if we add all the new people projected to be on the planet as well as the existing number of hungry individuals. Either way, we are talking about nearly 1-1.5 billion people lacking sufficient food. For this reason, your team has been tasked with analyzing global historical data related to crop yields and figuring out how the citizens of the world can use machine learning and data science to understand the most important factors related to crop yield, temperature, rainfall, irrigation, and pesticides.

Project Goal:

  1. Create a model that successfully predicts Crop yield given various basic features related to agriculture on a global scale using longitudinal data

  2. Using this data and these models, can you predict which crops will be the most important crops to target worldwide production and in which continents? What about in which countries?

Executive Summary:

For this work, our main data set was pulled from FAOSTAT (by the Food and Agriculture Databank of the FAO). Our goal was to build various types of regression models in order to predict crop yield, as we felt this parameter is incredibly important to help solve the global hunger crisis and to support the UN mission of ending world hunger by 2030. We first needed to clean the data set by dropping null values and merging available data sets. In the Exploratory Data Analysis, we visualized the cleaned data in order to get a better sense of how crop yield related to other features in the data set. In the modeling phase, we tested various models on two feature sets and prioritized the strongest model that predicted yield for this data set by comparing R2, MAE, RMSE, and MSE scores. We concluded that Adaboost Regressor was the best model and we were able to get a 0.96 R2 score for our testing set. We were able to find which features were most predictive of our target variable, crop yield such as: 'crop potatoes','area' (in hectares), and 'fertilizer use.' Our model was succesfully able to predict crop yield in a global data set. We were able to determine that potatoes have a high yield, but low levels of production, while other crops such as rice and wheat have a high level of production, despite decreasing harvested area, indicating higher agronomic efficiency.

Data Sources

FAO Data

Our dataset was derived from FAOSTAT(The Food and Agriculture Databank of the FAO). Dataset Link

FAO, the Food and Agriculture Organization of the United Nations, is a specialized agency of the United Nations that leads international efforts to defeat global hunger. With over 194 member states, FAO works in over 130 countries worldwide. About FAO

FAOSTAT provides free access to food and agriculture data for over 245 countries and territories and covers all FAO regional groupings from 1961 to the most recent year available. FAOSTAT data are organized within the following domains:

  • Production
  • Food Security and Nutrition
  • Food Balances
  • Trade
  • Prices
  • Land, Input and Sustainability
  • Population and Employment
  • Investment Macro-Economics Indicators
  • Climate Change
  • Forestry

Data Dictionary

Type Description Example
Area_code float64 FAO code associated to the Country 1
Country object Country name Albania
Item_code float64 FAO code associated with the crop 44
Crop object Name of the crop Wheat
Year float64 Calendar year 1961
Area_ha float64 Harvested area for the crop in ha 350000
Yield_hg_ha float64 Yield per crop in hg/ha 14000
Value_N_tonnes float64 Total N applied in the country in tonnes 1000
Value_P_tonnes float64 Total P applied in the country in tonnes 100
Value_K_tonnes float64 Total K applied in the country in tonnes 50
pop_unit object Unit of pop_value (1000 person) 1000 persons
pop_value float64 Number of people to be multiplied by 1000 9169.41

Staple Crop Selection

A crop is a plant that can be grown and harvested for food or profit. By use, crops fall into six categories: food crops, feed crops, fiber crops, oil crops, ornamental crops, and industrial crops (Source). For our research we to selected the most important food crops based on their share of global caloric intake from all sources. The ranking was based on data from the WorldAtlas ranking (Source), wikiepedia (Source) and FAO (Source). We also included barley as it is the fourth most important cultivated cereal in the world (Source). The selected food crops are:

  • Maize
  • Potato
  • Rice, paddy
  • Wheat
  • Sorghum
  • Cassava
  • Barley
  • Soybeans
  • Yams

Fertilizer

For each Crop, we downloaded harvested area and yield data from 1961 through 2019 for all the countries from which FAO collects data. Unfortunately, there are no data on the type and quantity of fertilizer used for each of crop we selected. Since fertilizer is the most important input in crop production we decided to use fertilizer data for the entire country as a metric of the input for each crop. We used data for the three macronutrients : nitrogen total (N), phosphate total (P) and potash total K. Data for K are not as complete as those for N and P, in many cases data prior to 1970 is non-existent.

Population

Data on population were download for each country selected. Values are for 1000 person

Data Import and Handling

All dataset were downloaded as csv. To merge datasets unique keys were created. When merging data for crop and yield the key was “CountryYearCrop”. To merge fertilizer and population data the key was “CountryYear”. After import and the merge columns were renamed for ease of use. Redundant columns were eliminated.

MODELING

The modeling was done using the dataset created after initial data cleaning and EDA, it centered around using two feature sets to train and test the model. These two feature sets were defined as either having crop and continent dummy columns or having crop, continent, and country dummy columns. The distinction between these two were further heightened when looking at the total feature size, while the first feature set only had 19 features, the second feature set which included dummy columns for countries had 189 columns.

We used seven different models for each of these two feature sets. These models were Linear Regression, K-Nearest Neighbors, Decision Tree Regressor, Bagging Regressor, Random Forest Regressor, Ada-Boost Regressor, and a Gradient-Boost Regressor. Through numerous trials, we were able to determine that for both feature sets, Ada-Boost Regressor had the greatest overall performance.

CONCLUSION

  • A machine learning model has value in predicting crop yield and total production

  • Our models can successfully isolate the most important factors for predicting crop yield

  • Crop Yield is generally increasing for all major crops, even while harvested area decreases

  • Crop yield will need to be considered with other types of metrics (crop yield / capita, total production, total production per capita) to get a fuller picture of the global hunger crisis

  • More agronomical data will be necessary to correctly predict each single crop locally

SOFTWARE REQUIREMENTS

Programming language used: Python

Packages prominently used:

Pandas: For data structures and operations for manipulating numerical tables

Numpy: For work on large, multi-dimensional arrays, mathematical functions, and matrices.

Seaborn: Data visualization built on top of Matplotlib and integrates well with Pandas.

Matplotlib: The base data visualization and plotting library for Python, seaborn is built on top of this package

Scikit-Learn: Scikit-learn is a free software machine learning library for the Python programming language. Specific Scikit-Learn libraries used are neighbors, ensemble, pipeline, model selection, metrics, linear model, and pre-processing

Owner
Adam Muhammad Klesc
Hopeful data scientist. Currently in General Assembly and taking their data science immersive course!
Adam Muhammad Klesc
This project intends to take the user's CEP (brazilian adress code) and return the local in which the CEP is placed.

This project aims to simply return the CEP's (the brazilian resident adress code) User of the application. The project uses a request and passes on to

Daniel Soares Saldanha 4 Nov 17, 2021
Penelope Shell Handler

penelope Penelope is an advanced shell handler. Its main aim is to replace netcat as shell catcher during exploiting RCE vulnerabilities. It works on

293 Dec 30, 2022
Oblique Strategies for Python

Oblique Strategies for Python

Łukasz Langa 3 Feb 17, 2022
A python library what works with numbers.

pynum A python library what works with numbers. Prime Prime class have everithing you want about prime numbers. check_prime The check_prime method is

Mohammad Mahdi Paydar Puya 1 Jan 07, 2022
EFB Docker image with efb-telegram-master and efb-wechat-slave

efb-wechat-docker EFB Docker image with efb-telegram-master and efb-wechat-slave Features Container run by non-root user. Support add environment vari

Haukeng 1 Nov 10, 2022
Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.

Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.

Shreejan Dolai 9 Dec 31, 2022
NFT-Image-Generator - Utility to generate a large collection of unique images

NFT-Image-Generator Utility for creating a generative art collection from suppli

Sem Moolenschot 60 Dec 15, 2022
Simple python script for AD enumeration

AutoAD - Simple python script for AD enumeration This tool was created on my spare time to help fellow penetration testers in automating the basic enu

Mohammad Arman 28 Jun 21, 2022
We want to check several batch of web URLs (1~100 K) and find the phishing website/URL among them.

We want to check several batch of web URLs (1~100 K) and find the phishing website/URL among them. This module is designed to do the URL/web attestation by using the API from NUS-Phishperida-Project.

3 Dec 28, 2022
🛠️ Plugin to integrate Chuy with Poetry

Archived This is bundled with Chuy since v1.3.0. Poetry Chuy Plugin This plugin integrates Chuy with Poetry. Note: This only works in Poetry 1.2.0 or

Eliaz Bobadilla 4 Sep 24, 2021
Project issue to website data transformation toolkit

braintransform Project issue to website data transformation toolkit. Introduction The purpose of these scripts is to be able to dynamically generate t

Brainhack 1 Nov 19, 2021
⚙️ Compile, Read and update your .conf file in python

⚙️ Compile, Read and update your .conf file in python

Reece Harris 2 Aug 15, 2022
adbsync - An ADB syncing helper

adbsync - An ADB syncing helper What's this? Everytime I wanted to make a backup of my phone, or restore those files onto it, I had to use everytime t

Giovanni Gualtieri 3 Aug 05, 2022
Path of Exile Vendor Recipe Tracker (Chaos/Regal orb)

Path of Exile Vendor Trade Tracker Are you tired of manually keeping track of collected and missing items for farming Chaos or Regal Orbs in PoE? Me t

1 Nov 09, 2021
Hello, Welcome to this repo. don't forget to read guidelines in readme.md

Hacktoberfest_2021 If you looking for your first contribution, we are here to help. Just create a simple program using any language you like in our fo

Wafa Rifqi Anafin 117 Dec 14, 2022
NORETURN is an esoteric programming language, based around the idea of not going back

NORETURN NORETURN is an esoteric programming language, based around the idea of not going back Concept Program coded in noreturn runs over one array,

1 Dec 15, 2021
dragmap-meth: Fast and accurate aligner for bisulfite sequencing reads using dragmap

dragmap_meth (dragmap_meth.py) Alignment of BS-Seq reads using dragmap. Intro This works for single-end reads and for paired-end reads from the direct

Shaojun Xie 3 Jul 14, 2022
JLC2KICAD_lib is a python script that generate a component library for KiCad from the JLCPCB/easyEDA library.

JLC2KiCad_lib is a python script that generate a component library (schematic, footprint and 3D model) for KiCad from the JLCPCB/easyEDA library. This script requires Python 3.6 or higher.

Nicolas Toussaint 73 Dec 26, 2022
MobaXterm-GenKey

MobaXterm-GenKey 你懂的!! 本地启动 需要安装Python3!!!

malaohu 328 Dec 29, 2022
RFDesign - Protein hallucination and inpainting with RoseTTAFold

RFDesign: Protein hallucination and inpainting with RoseTTAFold Jue Wang (juewan

139 Jan 06, 2023