Voice Gender Recognition

Overview

Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Models implemented by Anne Livia.

Dataset Information:

  • This dataset was obtained from Kaggle on this link by Kory Becker and was created to identify a voice as male or female, based upon acoustic properties of the voice and speech.
  • The dataset consists of 3,168 recorded voice samples, collected from male and female speakers. The voice samples are pre-processed by acoustic analysis in R using the seewave and tuneR packages, with an analyzed frequency range of 0hz-280hz (human vocal range).

Properties:

  • meanfreq: mean frequency (in kHz)
  • sd: standard deviation of frequency
  • median: median frequency (in kHz)
  • Q25: first quantile (in kHz)
  • Q75: third quantile (in kHz)
  • IQR: interquantile range (in kHz)
  • skew: skewness (see note in specprop description)
  • kurt: kurtosis (see note in specprop description)
  • sp.ent: spectral entropy
  • sfm: spectral flatness
  • mode: mode frequency
  • centroid: frequency centroid (see specprop)
  • meanfun: average of fundamental frequency measured across acoustic signal
  • minfun: minimum fundamental frequency measured across acoustic signal
  • maxfun: maximum fundamental frequency measured across acoustic signal
  • meandom: average of dominant frequency measured across acoustic signal
  • mindom: minimum of dominant frequency measured across acoustic signal
  • maxdom: maximum of dominant frequency measured across acoustic signal
  • dfrange: range of dominant frequency measured across acoustic signal
  • modindx: modulation index. Calculated as the accumulated absolute difference between adjacent measurements of fundamental ---- **frequencies divided by the frequency range
  • label: male or female

Software Informations

  • Python
  • Scikit-learn
  • Matplotlib
  • Seaborn

Trained Models

  • Decision Tree Model

    • Acurracy: 0.9652996845425867

    • Precision: 0.9715189873417721

    • Recall: 0.959375

    • F1-Score: 0.9654088050314465

    • Confusion Matrix, Feature Importance, and Precision-Recall Curve respectively:

      plots for decision tree model
  • Random Forest Model

    • Acurracy: 0.9810725552050473

    • Precision: 0.9842767295597484

    • Recall: 0.978125

    • F1-Score: 0.9811912225705329

    • Confusion Matrix, Feature Importance, and Precision-Recall Curve respectively:

      plots for random forest
  • Extra Tree Model

    • Acurracy: 0.9873817034700315

    • Precision: 0.9905660377358491

    • Recall: 0.984375

    • F1-Score: 0.9874608150470221

    • Confusion Matrix, Feature Importance, and Precision-Recall Curve respectively:

      plots for extra tree
  • XGBoost model

    • Acurracy: 0.9873817034700315

    • Precision: 0.9905660377358491

    • Recall: 0.984375

    • F1-Score: 0.9874608150470221

    • Confusion Matrix, Feature Importance, and Precision-Recall Curve respectively:

      plots for xgboost
Owner
Anne Livia
Undergraduate student in Information Systems
Anne Livia
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023