Interactivity Lab: Household Pulse Explorable

Overview

Interactivity Lab: Household Pulse Explorable

Goal: Build an interactive application that incorporates fundamental Streamlit components to offer a curated yet open-ended look at a dataset.

The Household Pulse Survey is a weekly survey run by the US Census Bureau that measures how the coronavirus pandemic is impacting households across the country from a social and economic perspective. It’s a valuable and extensive source of data to gain insight on individuals and families, and one that we will only begin to touch on in today’s lab.

To help a user explore this data interactively, we will build a Streamlit application that displays the results of one Household Pulse Survey, which ran from from September 29 to October 11, 2021.

Part 0: Setup (before class)

Before coming to class, please download this repository, set up your virtual environment of choice, and install the dependencies using pip install -r requirements.txt. Now start the application by typing streamlit run streamlit_app.py. You should see the template code running in the browser!

Part 1: Warmup and generating plots

All your code for this lab should go in the streamlit_app.py script. In this file, you’ll see helper functions (some of which you will fill in) and a section labeled “MAIN CODE.” Most of your code will go in this latter section, which is at the top level of the script and will run from top to bottom to render your Streamlit application.

  1. Let’s get started by printing some data to the browser. Implement the load_data function, which should read the CSV file pulse39.csv and return it. Then, in the main code, use Streamlit’s builtin dataframe component to print the first 10 rows of df. You should see a scrollable table like this:

Screenshot of the dataframe being visualized in Streamlit

To get an idea of the distribution of demographics in this dataset, let’s create some summary plots using Altair. (The dataset includes several demographic features, which are listed in the Appendix at the bottom of this document. You may wish to visualize more of these features if you have time.)

  1. Create Altair bar charts to visualize the distributions of race and education levels in the data. You may want to refer to the Altair documentation as you build your charts. Remember that to render an Altair chart in Streamlit, you must call st.altair_chart(chart) on the Altair chart object.

    Tip: To get the counts of a categorical variable to visualize, you can use the Altair count aggregation, like so:

    chart = alt.Chart(df)...encode(
        x='count()',
        y='
         
          '
         
    )
  2. Make your charts interactive! This is super easy with Altair. Just add .interactive() to the end of your Altair function call, and you should be able to pan and zoom around your chart. You should also create some tooltips to show the numerical data values. To do this, add the tooltip parameter to your encoding, like so:

    chart = alt.Chart(df)...encode(
        ...,
        tooltip=['
         
          '
         ]
    ).interactive()

Examine the summary charts and see if you can get a sense of the distributions in the dataset. Take a minute to discuss with your group: Who is well-represented in this data, and who isn’t? Why might this be the case?

Part 2: Interactive Slicing Tool

Up until now, we’ve only used basic interactivity from Altair. But what if we want to allow the user to choose which data gets plotted? Let’s now build a Streamlit interface that lets the user select a group of interest based on some demographic variables (which we’ll call a “slice”), and compare distributions of outcome variables for people within the slice against people outside of it.

We'll allow the user to slice the data based on the following four demographic variables (don't worry, the code will be similar for most of these):

  • gender (includes transgender and an option for other gender identities)
  • race
  • education (highest education level completed)
  • age (integers ranging from 19 to 89)

Once they've sliced the data, we will visualize a set of vaccination-related outcome variables for people inside and outside the slice:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

If you're interested, the dataset contains a few other sets of outcomes, which you can browse in the Appendix. But for now, let's start slicing!

  1. Decide what controls are best for the user to manipulate each demographic variable. The controls that are supported in Streamlit are listed here.

  2. Build the controls in the “Custom slicing” section of the page. If you run into trouble, refer to the Streamlit docs or ask the TAs! Tip: Take note of how the values are returned from each Streamlit control. You will need this information for the subsequent steps.

  3. Fill in the get_slice_membership function, which builds a Boolean series indicating whether each data point is part of the slice or not. An example of how to do this using gender as a multiselect has already been filled in for you.

  4. Now, use the values returned from each control to create a slice by calling the get_slice_membership function.

  5. Test that your slicing tool is working by writing a line to the page that prints the count and percentage of the data that is contained in the slice. Manipulate some of the controls and check that the size of each slice matches your expectations.

  6. Create visualizations comparing the three outcome variables within the slice to the variables outside the slice. We recommend using an st.metric component to show the vaccination rate and the vaccine intention fields, and a bar chart to show the distribution of reasons for not getting the vaccine.

    Tip: To display the vaccine hesitancy reasons, the dataframe will require some transformation before passing it to Altair. We’ve provided a utility function to help you do this, which you can use like so:

    # Creates a dataframe with columns 'reason' (string) and 'agree' (boolean)
    vaccine_reasons_inslice = make_long_reason_dataframe(df[slice_labels], 'why_no_vaccine_')
    
    chart = alt.Chart(vaccine_reasons_inslice, title='In Slice').mark_bar().encode(
        x='sum(agree)',
        y='reason:O',
    ).interactive()
    # ...

Here is an example of what your slicing tool could look like (here we are using st.columns to make a 2-column layout):

Screenshot of an example showing a comparison of reasons why people are opting not to get the vaccine

With your group, try slicing the data a few different ways. Discuss whether you find any subgroups that have different outcomes than the rest of the population, and see if you can hypothesize why this might be!

Part 3 (bonus): Interactive Random Sampling

If you have time, you can implement another simple interactive function that users will appreciate. While large data exploration tools are powerful ways to see overall trends, the individual stories of people in the dataset can sometimes get lost. Let’s implement a tool to randomly sample from the dataset and portray information relevant to the topic you investigated above.

  1. In the “Person sampling” section, build a button to retrieve a random person.

  2. When the button is pressed, write code to retrieve a random row from the dataset. You can use the pandas.DataFrame.sample function for this.

  3. Display the information from this datapoint in a human-readable way. For example, one possible English description of a datapoint could look like this:

    This person is a 65-year-old Straight, Married Female of White race (non-hispanic). They have not received the vaccine, and their intention to not get the vaccine is 3.0. Their reasons for not getting the vaccine include: Concerned about possible side effects, Don't know if it will protect me, Don't believe I need it, Don't think COVID-19 is a big threat

As in Part 2, feel free to communicate this information in the way that feels most appropriate to you.

Discuss with your group: What do you notice about individual stories generated this way? What are the strengths and drawbacks of sampling and browsing individual datapoints compared to looking at summary visualizations?

Appendix: Dataset Features

Demographic Variables

  • age and age_group (age_group bins the ages into four categories)
  • gender (includes transgender and an option for other gender identities)
  • sexual_orientation
  • marital_status
  • race and hispanic (the US Census defines ‘Hispanic’ as being independent of self-identified race, which is why it is coded as a separate variable)
  • education (highest education level completed)
  • num_children_hhld (the number of children living in the person’s household)
  • had_covid (boolean)

Outcome Variables

Reasons for vaccine hesitancy

To study vaccination rates, people’s intentions to get or not get the vaccine, and their reasons for this, the following columns are available:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

Economic and food insecurity

The dataset includes columns that may be useful to understand people’s levels of financial and food insecurity:

  • expenses_difficulty (scale from 1 - 4, 1 is least difficulty, 4 is most difficulty paying expenses)
  • housing_difficulty (scale from 1 - 4, same as above for paying next rent or mortgage payment)
  • food_difficulty (scale from 1 - 4, same as above for having enough food)
  • why_not_enough_food_ (four boolean columns indicating whether the person experienced each reason for not having enough food. Note that multiple reasons can be selected)

Mental health

The dataset also includes some columns for understanding people’s recent mental health status:

  • freq_anxiety, freq_worry, freq_little_interest, freq_depressed (scale from 1 - 4 where 1 indicates not at all, 4 indicates nearly every day in the past two weeks)
  • mh_prescription_meds (boolean whether the person has taken prescription medication for mental health)
  • mh_services (boolean whether the person has received mental health services in the past month)
  • mh_notget (boolean whether the person sought mental health services but did not receive them)
Gives criticality score for an open source project

Open Source Project Criticality Score (Beta) This project is maintained by members of the Securing Critical Projects WG. Goals Generate a criticality

Open Source Security Foundation (OpenSSF) 1.1k Dec 23, 2022
Free and open source qualitative research tool

Taguette A spin on the phrase "tag it!", Taguette is a free and open source qualitative research tool that allows users to: Import PDFs, Word Docs (.d

Remi Rampin 48 Jan 02, 2023
A website to collect vintage 4 tracks cassette recorders.

Vintage 4tk cassette recorders A website to collect vintage 4 tracks cassette recorders. Local development setup Copy and customize Django settings (e

1 May 01, 2022
Some usefull scripts for the Nastran's 145 solution (Flutter Analysis) using the pyNastran package.

nastran-aero-flutter This project is intended to analyse the Supersonic Panel Flutter using the NASTRAN software. The project uses the pyNastran and t

zuckberj 11 Nov 16, 2022
Code for ML, domain generation, graph generation of ABC dataset

This is the repository for codes for ML, domain generation, graph generation of Asymmetric Buckling Columns (ABC) dataset in the paper "Learning Mechanically Driven Emergent Behavior with Message Pas

Peerasait Prachaseree (Jeffrey) 0 Jan 28, 2022
Mixtaper - Web app to make mixtapes

Mixtaper A web app which allows you to input songs in the form of youtube links

suryansh 1 Feb 14, 2022
Team Hash Brown Science4Cast Submission

Team Hash Brown Science4Cast Submission This code reproduces Team Hash Brown's (@princengoc, @Xieyangxinyu) best submission (ee5a) for the competition

3 Feb 02, 2022
Skip spotify ads by automatically restarting application when ad comes

SpotiByeAds No one likes interruptions! Don't you hate it when you're listening to your favorite jazz track or your EDM playlist and an ad for Old Spi

Partho 287 Dec 29, 2022
A small Blender addon for changing an object's local orientation while in edit mode

A small Blender addon for changing an object's local orientation while in edit mode.

Jonathan Lampel 50 Jan 06, 2023
Small C-like language compiler for the Uxn assembly language

Pyuxncle is a single-pass compiler for a small subset of C (albeit without the std library). This compiler targets Uxntal, the assembly language of the Uxn virtual computer. The output Uxntal is not

CPunch 13 Jun 28, 2022
nbsafety adds a layer of protection to computational notebooks by solving the stale dependency problem when executing cells out-of-order

nbsafety adds a layer of protection to computational notebooks by solving the stale dependency problem when executing cells out-of-order

150 Jan 07, 2023
This repository contains Python games that I've worked on. You'll learn how to create python games with AI. I try to focus on creating board games without GUI in Jupyter-notebook.

92_Python_Games 🎮 Introduction 👋 This repository contains Python games that I've worked on. You'll learn how to create python games with AI. I try t

Milaan Parmar / Милан пармар / _米兰 帕尔马 166 Jan 01, 2023
Remote Worker

Remote Worker Separation of Responsibilities There are several reasons to move some processing out of the main code base for security or performance:

V2EX 69 Dec 05, 2022
EloGGs 🎮 is a 1v1.LOL Trophy Boosting Program (PATCHED)

EloGGs 🎮 is an old patched 1v1.LOL boosting program I developed months ago, My team made around $1000 total off of this, but now it's been patched by the developers.

doop 1 Jul 22, 2022
PIP Manager written in python Tkinter

PIP Manager About PIP Manager is designed to make Python Package handling easier by just a click of a button!! Available Features Installing packages

Will Payne 9 Dec 09, 2022
General tricks that may help you find bad, or noisy, labels in your dataset

doubtlab A lab for bad labels. Warning still in progress. This repository contains general tricks that may help you find bad, or noisy, labels in your

vincent d warmerdam 449 Dec 26, 2022
High-level bindings to the Valhalla framework.

Valhalla for Python This spin-off project simply offers improved Python bindings to the fantastic Valhalla project. Installation pip install valhalla

GIS • OPS 20 Dec 13, 2022
Multi-Probe Attention for Semantic Indexing

Multi-Probe Attention for Semantic Indexing About This project is developed for the topic of COVID-19 semantic indexing. Directories & files A. The di

Jinghang Gu 1 Dec 18, 2022
STAC in Jupyter Notebooks

stac-nb STAC in Jupyter Notebooks Install pip install stac-nb Usage To use stac-nb in a project, start Jupyter Lab (jupyter lab), create a new noteboo

Darren Wiens 32 Oct 04, 2022
pyreports is a python library that allows you to create complex report from various sources

pyreports pyreports is a python library that allows you to create complex reports from various sources such as databases, text files, ldap, etc. and p

Matteo Guadrini aka GU 78 Dec 13, 2022