This repo includes some graph-based CTR prediction models and other representative baselines.

Overview

Graph-based CTR prediction

This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods:

  • Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction paper
  • GraphFM: Graph Factorization Machines for Feature Interaction Modeling paper

and some other representative baselines:

  • HoAFM: A High-order Attentive Factorization Machine for CTR Prediction paper
  • AutoInt: AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks paper
  • InterHAt: Interpretable Click-Through Rate Prediction through Hierarchical Attention paper

Requirements:

  • Tensorflow 1.5.0
  • Python 3.6
  • CUDA 9.0+ (For GPU)

Usage

Our code is based on AutoInt.

Input Format

The required input data is in the following format:

  • train_x: matrix with shape (num_sample, num_field). train_x[s][t] is the feature value of feature field t of sample s in the dataset. The default value for categorical feature is 1.
  • train_i: matrix with shape (num_sample, num_field). train_i[s][t] is the feature index of feature field t of sample s in the dataset. The maximal value of train_i is the feature size.
  • train_y: label of each sample in the dataset.

If you want to know how to preprocess the data, please refer to data/Dataprocess/Criteo/preprocess.py

Example

There are four public real-world datasets(Avazu, Criteo, KDD12, MovieLens-1M) that you can use. You can run the code on MovieLens-1M dataset directly in /movielens. The other three datasets are super huge, and they can not be fit into the memory as a whole. Therefore, we split the whole dataset into 10 parts and we use the first file as test set and the second file as valid set. We provide the codes for preprocessing these three datasets in data/Dataprocess. If you want to reuse these codes, you should first run preprocess.py to generate train_x.txt, train_i.txt, train_y.txt as described in Input Format. Then you should run data/Dataprocesss/Kfold_split/StratifiedKfold.py to split the whole dataset into ten folds. Finally you can run scale.py to scale the numerical value(optional).

To help test the correctness of the code and familarize yourself with the code, we upload the first 10000 samples of Criteo dataset in train_examples.txt. And we provide the scripts for preprocessing and training.(Please refer to data/sample_preprocess.sh and run_criteo.sh, you may need to modify the path in config.py and run_criteo.sh).

After you run the data/sample_preprocess.sh, you should get a folder named Criteo which contains part*, feature_size.npy, fold_index.npy, train_*.txt. feature_size.npy contains the number of total features which will be used to initialize the model. train_*.txt is the whole dataset.

Here's how to run the preprocessing.

cd data
mkdir Criteo
python ./Dataprocess/Criteo/preprocess.py
python ./Dataprocess/Kfold_split/stratifiedKfold.py
python ./Dataprocess/Criteo/scale.py

Here's how to train GraphFM on Criteo dataset.

CUDA_VISIBLE_DEVICES=$GPU python -m code.train \
--model_type GraphFM \
                        --data_path $YOUR_DATA_PATH --data Criteo \
                        --blocks 3 --heads 2 --block_shape "[64, 64, 64]" \
                        --ks "[39, 20, 5]" \
                        --is_save --has_residual \
                        --save_path ./models/GraphFM/Criteo/b3h2_64x64x64/ \
                        --field_size 39  --run_times 1 \
                        --epoch 2 --batch_size 1024 \

Here's how to train GraphFM on Avazu dataset.

CUDA_VISIBLE_DEVICES=$GPU python -m code.train \
--model_type GraphFM \
                        --data_path $YOUR_DATA_PATH --data Avazu \
                        --blocks 3 --heads 2 --block_shape "[64, 64, 64]" \
                        --ks "[23, 10, 2]" \
                        --is_save --has_residual \
                        --save_path ./models/GraphFM/Avazu/b3h2_64x64x64/ \
                        --field_size 23  --run_times 1 \
                        --epoch 2 --batch_size 1024 \

You can run the training on the relatively small MovieLens dataset in /movielens.

You should see the output like this:

...
train logs
...
start testing!...
restored from ./models/Criteo/b3h2_64x64x64/1/
test-result = 0.8088, test-logloss = 0.4430
test_auc [0.8088305055534442]
test_log_loss [0.44297631300399626]
avg_auc 0.8088305055534442
avg_log_loss 0.44297631300399626

Citation

If you find this repo useful for your research, please consider citing the following paper:

@inproceedings{li2019fi,
  title={Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction},
  author={Li, Zekun and Cui, Zeyu and Wu, Shu and Zhang, Xiaoyu and Wang, Liang},
  booktitle={Proceedings of the 28th ACM International Conference on Information and Knowledge Management},
  pages={539--548},
  year={2019}
}

@article{li2021graphfm,
  title={GraphFM: Graph Factorization Machines for Feature Interaction Modeling},
  author={Li, Zekun and Wu, Shu and Cui, Zeyu and Zhang, Xiaoyu},
  journal={arXiv preprint arXiv:2105.11866},
  year={2021}
}

Contact information

You can contact Zekun Li ([email protected]), if there are questions related to the code.

Acknowledgement

This implementation is based on Weiping Song and Chence Shi's AutoInt. Thanks for their sharing and contribution.

Owner
Big Data and Multi-modal Computing Group, CRIPAC
Big Data and Multi-modal Computing Group, Center for Research on Intelligent Perception and Computing
Big Data and Multi-modal Computing Group, CRIPAC
This is the material used in my free Persian course: Machine Learning with Python

This is the material used in my free Persian course: Machine Learning with Python

Yara Mohamadi 4 Aug 07, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

2 Jan 09, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
A Collection of Conference & School Notes in Machine Learning ๐Ÿฆ„๐Ÿ“๐ŸŽ‰

Machine Learning Conference & Summer School Notes. ๐Ÿฆ„๐Ÿ“๐ŸŽ‰

558 Dec 28, 2022
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
Learn how to responsibly deliver value with ML.

Made With ML Applied ML ยท MLOps ยท Production Join 30K+ developers in learning how to responsibly deliver value with ML. ๐Ÿ”ฅ Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022