MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition

Overview

MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition

Python 2.7 Python 3.6
Build Status Build Status

MORAN is a network with rectification mechanism for general scene text recognition. The paper (accepted to appear in Pattern Recognition, 2019) in arXiv, final version is available now.

Here is a brief introduction in Chinese.

Recent Update

  • 2019.03.21 Fix a bug about Fractional Pickup.
  • Support Python 3.

Improvements of MORAN v2:

  • More stable rectification network for one-stage training
  • Replace VGG backbone by ResNet
  • Use bidirectional decoder (a trick borrowed from ASTER)
Version IIIT5K SVT IC03 IC13 SVT-P CUTE80 IC15 (1811) IC15 (2077)
MORAN v1 (curriculum training)* 91.2 88.3 95.0 92.4 76.1 77.4 74.7 68.8
MORAN v2 (one-stage training) 93.4 88.3 94.2 93.2 79.7 81.9 77.8 73.9

*The results of v1 were reported in our paper. If this project is helpful for your research, please cite our Pattern Recognition paper.

Requirements

(Welcome to develop MORAN together.)

We recommend you to use Anaconda to manage your libraries.

Or use pip to install the libraries. (Maybe the torch is different from the anaconda version. Please check carefully and fix the warnings in training stage if necessary.)

    pip install -r requirements.txt

Data Preparation

Please convert your own dataset to LMDB format by using the tool (run in Python 2.7) provided by @Baoguang Shi.

You can also download the training (NIPS 2014, CVPR 2016) and testing datasets prepared by us.

The raw pictures of testing datasets can be found here.

Training and Testing

Modify the path to dataset folder in train_MORAN.sh:

	--train_nips path_to_dataset \
	--train_cvpr path_to_dataset \
	--valroot path_to_dataset \

And start training: (manually decrease the learning rate for your task)

	sh train_MORAN.sh
  • The training process should take less than 20s for 100 iterations on a 1080Ti.

Demo

Download the model parameter file demo.pth.

Put it into root folder. Then, execute the demo.py for more visualizations.

	python demo.py

Citation

@article{cluo2019moran,
  author    = {Canjie Luo and Lianwen Jin and Zenghui Sun},
  title     = {MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition},
  journal   = {Pattern Recognition}, 
  volume    = {90}, 
  pages     = {109--118},
  year      = {2019},
  publisher = {Elsevier}
}

Acknowledgment

The repo is developed based on @Jieru Mei's crnn.pytorch and @marvis' ocr_attention. Thanks for your contribution.

Attention

The project is only free for academic research purposes.

Owner
Canjie Luo
Canjie Luo
python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Danny Crasto 38 Dec 05, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
A Vietnamese personal card OCR website built with Django.

Django VietCardOCR Installation Creation of virtual environments is done by executing the command venv: python -m venv venv That will create a new fol

Truong Hoang Thuan 4 Sep 04, 2021
~1000 book pages + OpenCV + python = page regions identified as paragraphs, lines, images, captions, etc.

cosc428-structor I had an open-ended Computer Vision assignment to complete, and an out-of-copyright book that I wanted to turn into an ebook. Convent

Chad Oliver 45 Dec 06, 2022
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

PyTorch implementation of Learning by Aligning (ICCV 2021) This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infr

CV Lab @ Yonsei University 30 Nov 05, 2022
👄 The most accurate natural language detection library for Java and the JVM, suitable for long and short text alike

Quick Info this library tries to solve language detection of very short words and phrases, even shorter than tweets makes use of both statistical and

Peter M. Stahl 532 Dec 28, 2022
Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Sergio Díaz Fernández 1 Jan 13, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
Neural search engine for AI papers

Papers search Neural search engine for ML papers. Demo Usage is simple: input an abstract, get the matching papers. The following demo also showcases

Giancarlo Fissore 44 Dec 24, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
a Deep Learning Framework for Text

DeLFT DeLFT (Deep Learning Framework for Text) is a Keras and TensorFlow framework for text processing, focusing on sequence labelling (e.g. named ent

Patrice Lopez 350 Dec 19, 2022
EQFace: An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

EQFace: A Simple Explicit Quality Network for Face Recognition The first face recognition network that generates explicit face quality online.

DeepCam Shenzhen 141 Dec 31, 2022
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream vid

Peace 10 Jun 30, 2021
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved

Ankush Gupta 1.8k Dec 28, 2022
⛓ marc is a small, but flexible Markov chain generator

About marc (markov chain) is a small, but flexible Markov chain generator. Usage marc is easy to use. To build a MarkovChain pass the object a sequenc

Max Humber 65 Oct 27, 2022