A pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database

Overview

https://raw.githubusercontent.com/ClearcodeHQ/pytest-postgresql/master/logo.png

pytest-postgresql

Latest PyPI version Wheel Status Supported Python Versions License

What is this?

This is a pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database. It allows you to specify fixtures for PostgreSQL process and client.

How to use

Warning

Tested on PostgreSQL versions >= 10. See tests for more details.

Install with:

pip install pytest-postgresql

You will also need to install psycopg. See its installation instructions.

Plugin contains three fixtures:

  • postgresql - it's a client fixture that has functional scope. After each test it ends all leftover connections, and drops test database from PostgreSQL ensuring repeatability. This fixture returns already connected psycopg connection.
  • postgresql_proc - session scoped fixture, that starts PostgreSQL instance at it's first use and stops at the end of the tests.
  • postgresql_noproc - a noprocess fixture, that's connecting to already running postgresql instance. For example on dockerized test environments, or CI providing postgresql services

Simply include one of these fixtures into your tests fixture list.

You can also create additional postgresql client and process fixtures if you'd need to:

from pytest_postgresql import factories

postgresql_my_proc = factories.postgresql_proc(
    port=None, unixsocketdir='/var/run')
postgresql_my = factories.postgresql('postgresql_my_proc')

Note

Each PostgreSQL process fixture can be configured in a different way than the others through the fixture factory arguments.

Sample test

def test_example_postgres(postgresql):
    """Check main postgresql fixture."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

If you want the database fixture to be automatically populated with your schema there are two ways:

  1. client fixture specific
  2. process fixture specific

Both are accepting same set of possible loaders:

  • sql file path
  • loading function import path (string)
  • actual loading function

That function will receive host, port, user, dbname and password kwargs and will have to perform connection to the database inside. However, you'll be able to run SQL files or even trigger programmatically database migrations you have.

Client specific loads the database each test

postgresql_my_with_schema = factories.postgresql(
    'postgresql_my_proc',
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)

Warning

This way, the database will still be dropped each time.

The process fixture performs the load once per test session, and loads the data into the template database. Client fixture then creates test database out of the template database each test, which significantly speeds up the tests.

postgresql_my_proc = factories.postgresql_proc(
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)
pytest --postgresql-populate-template=path.to.loading_function --postgresql-populate-template=path.to.other:loading_function --postgresql-populate-template=path/to/file.sql

The loading_function from example will receive , and have to commit that. Connecting to already existing postgresql database --------------------------------------------------

Some projects are using already running postgresql servers (ie on docker instances). In order to connect to them, one would be using the postgresql_noproc fixture.

postgresql_external = factories.postgresql('postgresql_noproc')

By default the postgresql_noproc fixture would connect to postgresql instance using 5432 port. Standard configuration options apply to it.

These are the configuration options that are working on all levels with the postgresql_noproc fixture:

Configuration

You can define your settings in three ways, it's fixture factory argument, command line option and pytest.ini configuration option. You can pick which you prefer, but remember that these settings are handled in the following order:

  • Fixture factory argument
  • Command line option
  • Configuration option in your pytest.ini file
Configuration options
PostgreSQL option Fixture factory argument Command line option pytest.ini option Noop process fixture Default
Path to executable executable --postgresql-exec postgresql_exec
/usr/lib/postgresql/13/bin/pg_ctl
host host --postgresql-host postgresql_host yes 127.0.0.1
port port --postgresql-port postgresql_port yes (5432) random
postgresql user user --postgresql-user postgresql_user yes postgres
password password --postgresql-password postgresql_password yes  
Starting parameters (extra pg_ctl arguments) startparams --postgresql-startparams postgresql_startparams
-w
Postgres exe extra arguments (passed via pg_ctl's -o argument) postgres_options --postgresql-postgres-options postgresql_postgres_options
 
Log filename's prefix logsprefix --postgresql-logsprefix postgresql_logsprefix
 
Location for unixsockets unixsocket --postgresql-unixsocketdir postgresql_unixsocketdir
$TMPDIR
Database name dbname --postgresql-dbname postgresql_dbname yes, however with xdist an index is being added to name, resulting in test0, test1 for each worker. test
Default Schema either in sql files or import path to function that will load it (list of values for each) load --postgresql-load postgresql_load yes  
PostgreSQL connection options options --postgresql-options postgresql_options yes  

Example usage:

  • pass it as an argument in your own fixture

    postgresql_proc = factories.postgresql_proc(
        port=8888)
  • use --postgresql-port command line option when you run your tests

    py.test tests --postgresql-port=8888
    
  • specify your port as postgresql_port in your pytest.ini file.

    To do so, put a line like the following under the [pytest] section of your pytest.ini:

    [pytest]
    postgresql_port = 8888

Examples

Populating database for tests

With SQLAlchemy

This example shows how to populate database and create an SQLAlchemy's ORM connection:

Sample below is simplified session fixture from pyramid_fullauth tests:

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.pool import NullPool
from zope.sqlalchemy import register


@pytest.fixture
def db_session(postgresql):
    """Session for SQLAlchemy."""
    from pyramid_fullauth.models import Base

    connection = f'postgresql+psycopg2://{postgresql.info.user}:@{postgresql.info.host}:{postgresql.info.port}/{postgresql.info.dbname}'

    engine = create_engine(connection, echo=False, poolclass=NullPool)
    pyramid_basemodel.Session = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
    pyramid_basemodel.bind_engine(
        engine, pyramid_basemodel.Session, should_create=True, should_drop=True)

    yield pyramid_basemodel.Session

    transaction.commit()
    Base.metadata.drop_all(engine)


@pytest.fixture
def user(db_session):
    """Test user fixture."""
    from pyramid_fullauth.models import User
    from tests.tools import DEFAULT_USER

    new_user = User(**DEFAULT_USER)
    db_session.add(new_user)
    transaction.commit()
    return new_user


def test_remove_last_admin(db_session, user):
    """
    Sample test checks internal login, but shows usage in tests with SQLAlchemy
    """
    user = db_session.merge(user)
    user.is_admin = True
    transaction.commit()
    user = db_session.merge(user)

    with pytest.raises(AttributeError):
        user.is_admin = False

Note

See the original code at pyramid_fullauth's conftest file. Depending on your needs, that in between code can fire alembic migrations in case of sqlalchemy stack or any other code

Maintaining database state outside of the fixtures

It is possible and appears it's used in other libraries for tests, to maintain database state with the use of the pytest-postgresql database managing functionality:

For this import DatabaseJanitor and use its init and drop methods:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    janitor = DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
    janitor.init()
    yield psycopg2.connect(
        dbname="my_test_database",
        user=postgresql_proc.user,
        password="secret_password",
        host=postgresql_proc.host,
        port=postgresql_proc.port,
    )
    janitor.drop()

or use it as a context manager:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    with DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
        yield psycopg2.connect(
            dbname="my_test_database",
            user=postgresql_proc.user,
            password="secret_password",
            host=postgresql_proc.host,
            port=postgresql_proc.port,
        )

Note

DatabaseJanitor manages the state of the database, but you'll have to create connection to use in test code yourself.

You can optionally pass in a recognized postgresql ISOLATION_LEVEL for additional control.

Note

See DatabaseJanitor usage in python's warehouse test code https://github.com/pypa/warehouse/blob/5d15bfe/tests/conftest.py#L127

Connecting to Postgresql (in a docker)

To connect to a docker run postgresql and run test on it, use noproc fixtures.

docker run --name some-postgres -e POSTGRES_PASSWORD=mysecretpassword -d postgres

This will start postgresql in a docker container, however using a postgresql installed locally is not much different.

In tests, make sure that all your tests are using postgresql_noproc fixture like that:

postgresql_in_docker = factories.postgresql_noproc()
postresql = factories.postgresql("postgresql_in_docker", db_name="test")


def test_postgres_docker(postresql):
    """Run test."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

And run tests:

pytest --postgresql-host=172.17.0.2 --postgresql-password=mysecretpassword

Using a common database initialisation between tests

If you've got several tests that require common initialisation, you need to define a load and pass it to your custom postgresql process fixture:

import pytest_postgresql.factories
def load_database(**kwargs):
    db_connection: connection = psycopg2.connect(**kwargs)
    with db_connection.cursor() as cur:
        cur.execute("CREATE TABLE stories (id serial PRIMARY KEY, name varchar);")
        cur.execute(
            "INSERT INTO stories (name) VALUES"
            "('Silmarillion'), ('Star Wars'), ('The Expanse'), ('Battlestar Galactica')"
        )
        db_connection.commit()

postgresql_proc = factories.postgresql_proc(
    load=[load_database],
)

postgresql = factories.postgresql(
    "postgresql_proc",
)

You can also define your own database name by passing same dbname value to both factories.

The way this will work is that the process fixture will populate template database, which in turn will be used automatically by client fixture to create a test database from scratch. Fast, clean and no dangling transactions, that could be accidentally rolled back.

Same approach will work with noproces fixture, while connecting to already running postgresql instance whether it'll be on a docker machine or running remotely or locally.

Owner
Clearcode
Software house with a passion for technology. We specialize in building enterprise-grade adtech, martech and analytics platforms.
Clearcode
输入Google Hacking语句,自动调用Chrome浏览器爬取结果

Google-Hacking-Crawler 该脚本可输入Google Hacking语句,自动调用Chrome浏览器爬取结果 环境配置 python -m pip install -r requirements.txt 下载Chrome浏览器

Jarcis 4 Jun 21, 2022
A web scraping using Selenium Webdriver

Savee - Images Downloader Project using Selenium Webdriver to download images from someone's profile on https:www.savee.it website. Usage The project

Caio Eduardo Lobo 1 Dec 17, 2021
BDD library for the py.test runner

BDD library for the py.test runner pytest-bdd implements a subset of the Gherkin language to enable automating project requirements testing and to fac

pytest-dev 1.1k Jan 09, 2023
Integration layer between Requests and Selenium for automation of web actions.

Requestium is a Python library that merges the power of Requests, Selenium, and Parsel into a single integrated tool for automatizing web actions. The

Tryolabs 1.7k Dec 27, 2022
🏃💨 For when you need to fill out feedback in the last minute.

BMSCE Auto Feedback For when you need to fill out feedback in the last minute. 🏃 💨 Setup Clone the repository Run pip install selenium Set the RATIN

Shaan Subbaiah 10 May 23, 2022
A pure Python script to easily get a reverse shell

easy-shell A pure Python script to easily get a reverse shell. How it works? After sending a request, it generates a payload with different commands a

Cristian Souza 48 Dec 12, 2022
automate the procedure of 403 response code bypass

403bypasser automate the procedure of 403 response code bypass Description i notice a lot of #bugbountytips describe how to bypass 403 response code s

smackerdodi2 40 Dec 16, 2022
A testing system for catching visual regressions in Web applications.

Huxley Watches you browse, takes screenshots, tells you when they change Huxley is a test-like system for catching visual regressions in Web applicati

Facebook Archive 4.1k Nov 30, 2022
Rerun pytest when your code changes

A simple watcher for pytest Overview pytest-watcher is a tool to automatically rerun pytest when your code changes. It looks for the following events:

Olzhas Arystanov 74 Dec 29, 2022
Run ISP speed tests and save results

SpeedMon Automatically run periodic internet speed tests and save results to a variety of storage backends. Supported Backends InfluxDB v1 InfluxDB v2

Matthew Carey 9 May 08, 2022
Parameterized testing with any Python test framework

Parameterized testing with any Python test framework Parameterized testing in Python sucks. parameterized fixes that. For everything. Parameterized te

David Wolever 714 Dec 21, 2022
fsociety Hacking Tools Pack – A Penetration Testing Framework

Fsociety Hacking Tools Pack A Penetration Testing Framework, you will have every script that a hacker needs. Works with Python 2. For a Python 3 versi

Manisso 8.2k Jan 03, 2023
MongoDB panel for the Flask Debug Toolbar

Flask Debug Toolbar MongoDB Panel Info: An extension panel for Rob Hudson's Django Debug Toolbar that adds MongoDB debugging information Author: Harry

Cenk Altı 4 Dec 11, 2019
splinter - python test framework for web applications

splinter - python tool for testing web applications splinter is an open source tool for testing web applications using Python. It lets you automate br

Cobra Team 2.6k Dec 27, 2022
No longer maintained, please migrate to model_bakery

Model Mommy: Smart fixtures for better tests IMPORTANT: Model Mommy is no longer maintained and was replaced by Model Bakery. Please, consider migrati

Bernardo Fontes 917 Oct 04, 2022
Find index entries in $INDEX_ALLOCATION attributes

INDXRipper Find index entries in $INDEX_ALLOCATION attributes Timeline created using mactime.pl on the combined output of INDXRipper and fls. See: sle

32 Nov 05, 2022
Pyramid debug toolbar

pyramid_debugtoolbar pyramid_debugtoolbar provides a debug toolbar useful while you're developing your Pyramid application. Note that pyramid_debugtoo

Pylons Project 95 Sep 17, 2022
Obsei is a low code AI powered automation tool.

Obsei is a low code AI powered automation tool. It can be used in various business flows like social listening, AI based alerting, brand image analysis, comparative study and more .

Obsei 782 Dec 31, 2022
buX Course Enrollment Automation

buX automation BRACU - buX course enrollment automation Features: Automatically enroll into multiple courses at a time. Find courses just entering cou

Mohammad Shakib 1 Oct 06, 2022
A Library for Working with Sauce Labs

Robotframework - Sauce Labs Plugin This is a plugin for the SeleniumLibrary to help with using Sauce Labs. This library is a plugin extension of the S

joshin4colours 6 Oct 12, 2021