Geometry-Free View Synthesis: Transformers and no 3D Priors

Overview

Geometry-Free View Synthesis: Transformers and no 3D Priors

teaser

Geometry-Free View Synthesis: Transformers and no 3D Priors
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

arXiv | BibTeX | Colab

Interactive Scene Exploration Results

RealEstate10K:
realestate
Videos: short (2min) / long (12min)

ACID:
acid
Videos: short (2min) / long (9min)

Demo

For a quickstart, you can try the Colab demo, but for a smoother experience we recommend installing the local demo as described below.

Installation

The demo requires building a PyTorch extension. If you have a sane development environment with PyTorch, g++ and nvcc, you can simply

pip install git+https://github.com/CompVis/geometry-free-view-synthesis#egg=geometry-free-view-synthesis

If you run into problems and have a GPU with compute capability below 8, you can also use the provided conda environment:

git clone https://github.com/CompVis/geometry-free-view-synthesis
conda env create -f geometry-free-view-synthesis/environment.yaml
conda activate geofree
pip install geometry-free-view-synthesis/

Running

After installation, running

braindance.py

will start the demo on a sample scene. Explore the scene interactively using the WASD keys to move and arrow keys to look around. Once positioned, hit the space bar to render the novel view with GeoGPT.

You can move again with WASD keys. Mouse control can be activated with the m key. Run braindance.py to run the demo on your own images. By default, it uses the re-impl-nodepth (trained on RealEstate without explicit transformation and no depth input) which can be changed with the --model flag. The corresponding checkpoints will be downloaded the first time they are required. Specify an output path using --video path/to/vid.mp4 to record a video.

> braindance.py -h
usage: braindance.py [-h] [--model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}] [--video [VIDEO]] [path]

What's up, BD-maniacs?

key(s)       action                  
=====================================
wasd         move around             
arrows       look around             
m            enable looking with mouse
space        render with transformer 
q            quit                    

positional arguments:
  path                  path to image or directory from which to select image. Default example is used if not specified.

optional arguments:
  -h, --help            show this help message and exit
  --model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}
                        pretrained model to use.
  --video [VIDEO]       path to write video recording to. (no recording if unspecified).

Training

Data Preparation

We support training on RealEstate10K and ACID. Both come in the same format as described here and the preparation is the same for both of them. You will need to have colmap installed and available on your $PATH.

We assume that you have extracted the .txt files of the dataset you want to prepare into $TXT_ROOT, e.g. for RealEstate:

> tree $TXT_ROOT
├── test
│   ├── 000c3ab189999a83.txt
│   ├── ...
│   └── fff9864727c42c80.txt
└── train
    ├── 0000cc6d8b108390.txt
    ├── ...
    └── ffffe622a4de5489.txt

and that you have downloaded the frames (we downloaded them in resolution 640 x 360) into $IMG_ROOT, e.g. for RealEstate:

> tree $IMG_ROOT
├── test
│   ├── 000c3ab189999a83
│   │   ├── 45979267.png
│   │   ├── ...
│   │   └── 55255200.png
│   ├── ...
│   ├── 0017ce4c6a39d122
│   │   ├── 40874000.png
│   │   ├── ...
│   │   └── 48482000.png
├── train
│   ├── ...

To prepare the $SPLIT split of the dataset ($SPLIT being one of train, test for RealEstate and train, test, validation for ACID) in $SPA_ROOT, run the following within the scripts directory:

python sparse_from_realestate_format.py --txt_src ${TXT_ROOT}/${SPLIT} --img_src ${IMG_ROOT}/${SPLIT} --spa_dst ${SPA_ROOT}/${SPLIT}

You can also simply set TXT_ROOT, IMG_ROOT and SPA_ROOT as environment variables and run ./sparsify_realestate.sh or ./sparsify_acid.sh. Take a look into the sources to run with multiple workers in parallel.

Finally, symlink $SPA_ROOT to data/realestate_sparse/data/acid_sparse.

First Stage Models

As described in our paper, we train the transformer models in a compressed, discrete latent space of pretrained VQGANs. These pretrained models can be conveniently downloaded by running

python scripts/download_vqmodels.py 

which will also create symlinks ensuring that the paths specified in the training configs (see configs/*) exist. In case some of the models have already been downloaded, the script will only create the symlinks.

For training custom first stage models, we refer to the taming transformers repository.

Running the Training

After both the preparation of the data and the first stage models are done, the experiments on ACID and RealEstate10K as described in our paper can be reproduced by running

python geofree/main.py --base configs//_13x23_.yaml -t --gpus 0,

where is one of realestate/acid and is one of expl_img/expl_feat/expl_emb/impl_catdepth/impl_depth/impl_nodepth/hybrid. These abbreviations correspond to the experiments listed in the following Table (see also Fig.2 in the main paper)

variants

Note that each experiment was conducted on a GPU with 40 GB VRAM.

BibTeX

@misc{rombach2021geometryfree,
      title={Geometry-Free View Synthesis: Transformers and no 3D Priors}, 
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2021},
      eprint={2104.07652},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022