Geometry-Free View Synthesis: Transformers and no 3D Priors

Overview

Geometry-Free View Synthesis: Transformers and no 3D Priors

teaser

Geometry-Free View Synthesis: Transformers and no 3D Priors
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

arXiv | BibTeX | Colab

Interactive Scene Exploration Results

RealEstate10K:
realestate
Videos: short (2min) / long (12min)

ACID:
acid
Videos: short (2min) / long (9min)

Demo

For a quickstart, you can try the Colab demo, but for a smoother experience we recommend installing the local demo as described below.

Installation

The demo requires building a PyTorch extension. If you have a sane development environment with PyTorch, g++ and nvcc, you can simply

pip install git+https://github.com/CompVis/geometry-free-view-synthesis#egg=geometry-free-view-synthesis

If you run into problems and have a GPU with compute capability below 8, you can also use the provided conda environment:

git clone https://github.com/CompVis/geometry-free-view-synthesis
conda env create -f geometry-free-view-synthesis/environment.yaml
conda activate geofree
pip install geometry-free-view-synthesis/

Running

After installation, running

braindance.py

will start the demo on a sample scene. Explore the scene interactively using the WASD keys to move and arrow keys to look around. Once positioned, hit the space bar to render the novel view with GeoGPT.

You can move again with WASD keys. Mouse control can be activated with the m key. Run braindance.py to run the demo on your own images. By default, it uses the re-impl-nodepth (trained on RealEstate without explicit transformation and no depth input) which can be changed with the --model flag. The corresponding checkpoints will be downloaded the first time they are required. Specify an output path using --video path/to/vid.mp4 to record a video.

> braindance.py -h
usage: braindance.py [-h] [--model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}] [--video [VIDEO]] [path]

What's up, BD-maniacs?

key(s)       action                  
=====================================
wasd         move around             
arrows       look around             
m            enable looking with mouse
space        render with transformer 
q            quit                    

positional arguments:
  path                  path to image or directory from which to select image. Default example is used if not specified.

optional arguments:
  -h, --help            show this help message and exit
  --model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}
                        pretrained model to use.
  --video [VIDEO]       path to write video recording to. (no recording if unspecified).

Training

Data Preparation

We support training on RealEstate10K and ACID. Both come in the same format as described here and the preparation is the same for both of them. You will need to have colmap installed and available on your $PATH.

We assume that you have extracted the .txt files of the dataset you want to prepare into $TXT_ROOT, e.g. for RealEstate:

> tree $TXT_ROOT
├── test
│   ├── 000c3ab189999a83.txt
│   ├── ...
│   └── fff9864727c42c80.txt
└── train
    ├── 0000cc6d8b108390.txt
    ├── ...
    └── ffffe622a4de5489.txt

and that you have downloaded the frames (we downloaded them in resolution 640 x 360) into $IMG_ROOT, e.g. for RealEstate:

> tree $IMG_ROOT
├── test
│   ├── 000c3ab189999a83
│   │   ├── 45979267.png
│   │   ├── ...
│   │   └── 55255200.png
│   ├── ...
│   ├── 0017ce4c6a39d122
│   │   ├── 40874000.png
│   │   ├── ...
│   │   └── 48482000.png
├── train
│   ├── ...

To prepare the $SPLIT split of the dataset ($SPLIT being one of train, test for RealEstate and train, test, validation for ACID) in $SPA_ROOT, run the following within the scripts directory:

python sparse_from_realestate_format.py --txt_src ${TXT_ROOT}/${SPLIT} --img_src ${IMG_ROOT}/${SPLIT} --spa_dst ${SPA_ROOT}/${SPLIT}

You can also simply set TXT_ROOT, IMG_ROOT and SPA_ROOT as environment variables and run ./sparsify_realestate.sh or ./sparsify_acid.sh. Take a look into the sources to run with multiple workers in parallel.

Finally, symlink $SPA_ROOT to data/realestate_sparse/data/acid_sparse.

First Stage Models

As described in our paper, we train the transformer models in a compressed, discrete latent space of pretrained VQGANs. These pretrained models can be conveniently downloaded by running

python scripts/download_vqmodels.py 

which will also create symlinks ensuring that the paths specified in the training configs (see configs/*) exist. In case some of the models have already been downloaded, the script will only create the symlinks.

For training custom first stage models, we refer to the taming transformers repository.

Running the Training

After both the preparation of the data and the first stage models are done, the experiments on ACID and RealEstate10K as described in our paper can be reproduced by running

python geofree/main.py --base configs//_13x23_.yaml -t --gpus 0,

where is one of realestate/acid and is one of expl_img/expl_feat/expl_emb/impl_catdepth/impl_depth/impl_nodepth/hybrid. These abbreviations correspond to the experiments listed in the following Table (see also Fig.2 in the main paper)

variants

Note that each experiment was conducted on a GPU with 40 GB VRAM.

BibTeX

@misc{rombach2021geometryfree,
      title={Geometry-Free View Synthesis: Transformers and no 3D Priors}, 
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2021},
      eprint={2104.07652},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022