Ladder network is a deep learning algorithm that combines supervised and unsupervised learning

Overview

This repository contains source code for the experiments in a paper titled Semi-Supervised Learning with Ladder Networks by A Rasmus, H Valpola, M Honkala, M Berglund, and T Raiko.

Required libraries

Install Theano, Blocks Stable 0.2, Fuel Stable 0.2

Refer to the Blocks installation instructions for details but use tag v0.2 instead. Something along:

pip install git+git://github.com/mila-udem/[email protected]
pip install git+git://github.com/mila-udem/[email protected]

Fuel comes with Blocks, but you need to download and convert the datasets. Refer to the Fuel documentation. One might need to rename the converted files.

fuel-download mnist
fuel-convert mnist --dtype float32
fuel-download cifar10
fuel-convert cifar10
Alternatively, one can use the environment.yml file that is provided in this repo to create an conda environment.
  1. First install anaconda from https://www.continuum.io/downloads. Then,
  2. conda env create -f environment.yml
  3. source activate ladder
  4. The environment should be good to go!

Models in the paper

The following commands train the models with seed 1. The reported numbers in the paper are averages over several random seeds. These commands use all the training samples for training (--unlabeled-samples 60000) and none are used for validation. This results in a lot of NaNs being printed during the trainining, since the validation statistics are not available. If you want to observe the validation error and costs during the training, use --unlabeled-samples 50000.

MNIST all labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,1,0.01,0.01,0.01,0.01,0.01 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_full
# Bottom
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,2 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_all_baseline
MNIST 100 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 5000,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_bottom
# Gamma
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0.5 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_100_baseline
MNIST 1000 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --f-local-noise-std 0.2 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,10 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_1000_baseline
MNIST 50 labels
# Full model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --labeled-samples 50 --unlabeled-samples 60000 --seed 1 -- mnist_50_full
MNIST convolutional models
# Conv-FC
run.py train --encoder-layers convv:1000:26:1:1-convv:500:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_fc
# Conv-Small, Gamma
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1  -- mnist_100_conv_gamma
# Conv-Small, supervised baseline. Overfits easily, so keep training short.
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --f-local-noise-std 0.45 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_baseline
CIFAR models
# Conv-Large, Gamma
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-gauss --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,4.0 --num-epochs 70 --lrate-decay 0.86 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_gamma
# Conv-Large, supervised baseline. Overfits easily, so keep training short.
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-0 --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_baseline
Evaluating models with testset

After training a model, you can infer the results on a test set by performing the evaluate command. An example use after training a model:

./run.py evaluate results/mnist_all_bottom0
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
CTF (Capture The Flag) started from DEFCON CTF, a competitive game among computer security enthusiasts

CTF Wiki 中文 English Welcome to CTF Wiki! CTF (Capture The Flag) started from DEFCON CTF, a competitive game among computer security enthusiasts, origi

CTF Wiki 6.4k Jan 03, 2023
Useful guides, tutorials, and FAQs related to LEGO Universe and Darkflame Universe.

Awesome Lego Universe A curated list of awesome things related to LEGO Universe. LEGO Universe was a kid-friendly massively-multiplayer online role pl

Eric Myllyoja 33 Dec 12, 2022
Minecraft - Online Players Overlay Generator

Minecraft - Online Players Overlay Generator Contents About Quick Start Download Pre-Built Binary Run from Source Configuration Command-Line Options F

4 Sep 12, 2022
Just a copied of flappy bird game made by Thuongton999

flappy-bird Just a copied of flappy bird game made by Thuongton999 Installation and Usage Using terminal (on Window) Make sure you installed Python an

ThuongTon 9 Aug 08, 2021
An interactive pygame implementation of quadtree spatial quantization

QuadTree-py An interactive pygame implementation of quadtree spatial quantization Contents Installation Usage API Reference TODO Installation Clone th

Ethan 1 Dec 05, 2021
Hangman Game

Hangman Game Este juego fue creado a partir de los conocimientos adquiridos en el Curso de Python: Comprehensions, Lambdas y Manejo de Errores que exi

Carlos Valencia 2 Nov 14, 2022
Text-Adventure-Game [Open Source] A group project by the Python TASK Force

Text-Adventure-Game [Open Source] A group project by the Python TASK Force

Mircea Dumitrescu 2 Sep 17, 2021
My goofy little script for playing wordle

my wordle "solver" My goofy little script for playing wordle. It actually runs really slowly at first but once you've added some info (e.g. which lett

MB 3 Feb 04, 2022
BUG OUTBREAK is a game of adventure and shooting.

BUG OUTBREAK BUG OUTBREAK is a game of adventure and shooting. I am building the game for Github Game Off 2021. This game has 5 levels. You have to co

Shreejan Dolai 3 Nov 11, 2022
SuperChess is a GUI application for playing chess.

About SuperChess is a GUI application for playing chess. It is written in Python 3.10 programming language, uses PySide6 GUI library, python-chess lib

Boštjan Mejak 1 Oct 16, 2022
Replicating Minecraft World Generation in Python

Minecraft World Generation in Python This is an attempt to replicate Minecraft world generation in Python. This is part of an article published on Med

Bilal Himite 159 Dec 19, 2022
To be easier to create backup files for the game StoneShard

StoneShard_save_backup_tool A tool to create backups and load them. Setup Configure the program by opening the "config.json" file. In this file you wi

Lucas V. Moog Brentano 6 Sep 15, 2022
A DDQN that learned to play tic tac toe by playing against itself

TicTacToeAI A DDQN that learned to play tic tac toe by playing against itself Cu

Anik Patel 3 Apr 09, 2022
WORDLE Helper and Solver

WORDLE Helper and Solver There is a pupular game around WORDLE The game could be hard for non-English speaking people so I started to think of a helpe

1 Jan 24, 2022
The original Tetris tile-matching game as adopted by IBM PC.

🕹️ Tetris Game The original Tetris tile-matching game as adopted by IBM PC. Game developed purely on python using the Dear PyGui Framework. 📖 Instru

14 Nov 12, 2022
Create a Hangman Game using Python and all techniques of Python.

Hangman Game Created by Fernando Callasaca Game rules: Choose a word and if you guess it will appear completed. In case it is not the word then the ma

Fernando Callasaca 3 Nov 01, 2021
A fun discord bot for music, mini games, admin controls, economy, ai chatbot and levelling system

A fun discord bot for music, mini games, admin controls, economy, ai chatbot and levelling system. This bot was specially made for Dspark discord server.

2 Aug 30, 2022
Creates a landscape with more accurate river generation in Minecraft version 1.12 using python.

MinecraftLandRiverGen View the following youtube video to set up a world that can interact with the python programs

23 Dec 25, 2022
A short non 100% Accurate Solar System in pygame

solar-system-pygame Controls UP/DOWN for Emulation Speed Control ESC for Pause/Unpause q to Quit c or ESC again to Continue LEFT CLICK to Add an orbit

LightCrimson 2 May 28, 2022
This is a simple telegram bot for the game Pyal, a word guessing game inspired by Wordle

Pyal Telegram Bot This is a simple telegram bot for the game Pyal, a word guessing game inspired by Wordle. How does it work? Differently from the ori

Rafael Omiya 4 Oct 06, 2022