[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

Overview

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page]

@inproceedings{
  huang2021fapn,
  title={{FaPN}: Feature-aligned Pyramid Network for Dense Image Prediction},
  author={Shihua Huang and Zhichao Lu and Ran Cheng and Cheng He},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Overview

FaPN vs. FPN Before vs. After Alignment

This project provides the official implementation for our ICCV2021 paper "FaPN: Feature-aligned Pyramid Network for Dense Image Prediction" based on Detectron2. FaPN is a simple yet effective top-down pyramidal architecture to generate multi-scale features for dense image prediction. Comprised of a feature alignment module (FAM) and a feature selection module (FSM), FaPN addresses the issue of feature alignment in the original FPN, leading to substaintial improvements on various dense prediction tasks, such as object detection, semantic, instance, panoptic segmentation, etc.

Installation

This project is based on Detectron2, which can be constructed as follows.

Training

To train a model with 8 GPUs, run:

cd /path/to/detectron2/tools
python3 train_net.py --config-file <config.yaml> --num-gpus 8

For example, to launch Faster R-CNN training (1x schedule) with ResNet-50 backbone on 8 GPUs, one should execute:

cd /path/to/detectron2/tools
python3 train_net.py --config-file ../configs\COCO-Detection\faster_rcnn_R_50_FAN_1x.yaml --num-gpus 8

Evaluation

To evaluate a pre-trained model with 8 GPUs, run:

cd /path/to/detectron2/tools
python3 train_net.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS /path/to/model_checkpoint

Results

COCO Object Detection

Faster R-CNN + FaPN:

Name lr
sched
box
AP
box
APs
box
APm
box
APl
download
R50 1x 39.2 24.5 43.3 49.1 model |  log
R101 3x 42.8 27.0 46.2 54.9 model |  log

Cityscapes Semantic Segmentation

PointRend + FaPN:

Name lr
sched
mask
mIoU
mask
i_IoU
mask
IoU_sup
mask
iIoU_sup
download
R50 1x 80.0 61.3 90.6 78.5 model |  log
R101 1x 80.1 62.2 90.8 78.6 model |  log

COCO Instance Segmentation

Mask R-CNN + FaPN:

Name lr
sched
mask
AP
mask
APs
box
AP
box
APs
download
R50 1x 36.4 18.1 39.8 24.3 model |  log
R101 3x 39.4 20.9 43.8 27.4 model |  log

PointRend + FaPN:

Name lr
sched
mask
AP
mask
APs
box
AP
box
APs
download
R50 1x 37.6 18.6 39.4 24.2 model |  log

COCO Panoptic Segmentation

PanopticFPN + FaPN:

Name lr
sched
PQ mask
mIoU
St
PQ
box
AP
Th
PQ
download
R50 1x 41.1 43.4 32.5 38.7 46.9 model |  log
R101 3x 44.2 45.7 35.0 43.0 53.3 model |  log
Owner
EMI-Group
The Evolving Machine Intelligence (EMI) Group, established in 2018, is motivated to understand how evolution generates complexity, diversity and intelligence.
EMI-Group
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022