HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
Gitlab py scripts

Gitlab py scripts The code can be used to gather the list of GitHub groups/projects and the permissions of the users in those groups/projects. group/p

Roghuchi 1 Aug 29, 2022
Nesse repositório serão armazenados os conteúdos de aula

Lets_Code_DS_Degree_Alunos Nesse repositório serão armazenados os conteúdos de aula Formato das aulas: Notebook de aula já vem comentado para reduzir

Patricia Bongiovanni Catandi 6 Jan 21, 2022
This alerts you when the avalanche score a goal

This alerts you when the avalanche score a goal

Davis Burrill 1 Jan 15, 2022
A tool to build reproducible wheels for you Python project or for all of your dependencies

asaman: Amra Saman (আমরা সমান) This is a tool to build reproducible wheels for your Python project or for all of your dependencies. What this means is

Kushal Das 14 Aug 05, 2022
Process RunGap output file of a workout and load data into Apple Numbers Spreadsheet and my website with API calls

BSD 3-Clause License Copyright (c) 2020, Mike Bromberek All rights reserved. ProcessWorkout Exercise data is exported in JSON format to iCloud using

Mike Bromberek 1 Jan 03, 2022
A Powerful Tool For Making Combo List(All possible modes)

ComboMaker A Powerful Tool For Making Combo List Introduction Check out all possible Combo list build modes with this tool =) How to Install Open the

MasterBurnt 7 Jan 07, 2023
NUM Alert - A work focus aid created for the Hack the Job hackathon

Contributors: Uladzislau Kaparykha, Amanda Hahn, Nicholas Waller Hackathon Team Name: N.U.M General Purpose: The general purpose of this program is to

Amanda Hahn 1 Jan 10, 2022
Notebooks for computing approximations to the prime counting function using Riemann's formula.

Notebooks for computing approximations to the prime counting function using Riemann's formula.

Tom White 2 Aug 02, 2022
Easy way to build a SaaS application using Python and Dash

EasySaaS This project will be attempt to make a great starting point for your next big business as easy and efficent as possible. This project will cr

xianhu 3 Nov 17, 2022
Boot.img patcher for Tolino ebook readers to enable ADB and root.

I'm not responsible for any damage to your devices by running this tool. Please note that you may loose warranty when using this, although (This is no

Aaron Dewes 9 Nov 13, 2022
Modelling the 30 salamander problem from `Pure Mathematics` by Martin Liebeck

Salamanders on an island The Problem From A Concise Introduction to Pure Mathematics By Martin Liebeck Critic Ivor Smallbrain is watching the horror m

Faisal Jina 1 Jul 10, 2022
ABT aka Animated Background Tool is a windows only python program that makes it that you can have animated background.

ABT ABT aka Animated Background Tool is a windows only python program that makes it that you can have animated background. 𝓡𝓔𝓐𝓓 𝓜𝓔, An Important

Yeeterboi4 2 Jul 16, 2022
Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store.

Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store. I used the dataset given to write a program that ranks these places.

Mahmoud 1 Dec 11, 2021
Izy - Python functions and classes that make python even easier than it is

izy Python functions and classes that make it even easier! You will wonder why t

5 Jul 04, 2022
This is a pretty basic but relatively nice looking Python Pomodoro Timer.

Python Pomodoro-Timer This is a pretty basic but relatively nice looking Pomodoro Timer. Currently its set to a very basic mode, but the funcationalit

EmmHarris 2 Oct 18, 2021
Mata kuliah Bahasa Pemrograman

praktikum2 MENGHITUNG LUAS DAN KELILING LINGKARAN FLOWCHART : OUTPUT PROGRAM : PENJELASAN : Tetapkan nilai pada variabel sesuai inputan dari user :

2 Nov 09, 2021
New multi tool im making adding features currently

Emera Multi Tool New multi tool im making adding features currently Current List of Planned Features - Linkvertise Bypasser - Discord Auto Bump - Gith

Lamp 3 Dec 03, 2021
A Gura parser implementation for Python

Gura parser This repository contains the implementation of a Gura format parser in Python. Installation pip install gura-parser Usage import gura gur

JWare Solutions 19 Jan 25, 2022
Basic cryptography done in Python for study purposes

criptografia Criptografia básica feita em Python para fins de estudo Converte letras em numeros partindo do indice 0 e vice-versa A criptografia é fei

Carlos Eduardo 2 Dec 05, 2021
This is a library for simulate probability theory problems specialy conditional probability

This is a library for simulate probability theory problems specialy conditional probability. It is also useful to create custom single or joint distribution with specific PMF or PDF to get probabilit

Mohamadreza Kariminejad 6 Mar 30, 2022