Python-Roadmap - Дорожная карта по изучению Python

Overview

Python Roadmap

Python logo

Я решил сделать что-то вроде дорожной карты (Roadmap) для изучения языка Python. Возможно, если найдутся желающие дополнять ее, модифицировать и редактировать, то получится хорошая инструкция. Данная информация полезна тем, кто хочет изучить основы Python.

P.S. за ссылки на курсы, видео и статьи я не получаю ничего. Все ссылки не реферальные.


Благодарности:

@IgorBeschastnov - за правки орфографии и пунктуации
@GraceAredel - за правки орфографии и пунктуации

Если у вас есть интересная информация о курсах и направлениях развития в области использования Python, пожалуйста, не стесняйтесь и добавляйте материалы в PR. Спасибо.


Почему Я решил это сделать? У меня было много попыток стать разработчиком. История об этом тут: (https://github.com/GnuriaN/Python-Roadmap/blob/master/previous_version/README.md). В итоге я устроился на работу и получил должность Junior Software Developer (2018 год). Но я решил, что нужно продолжать создавать RoadMap и довести его до логического конца. Мой путь не единственно верный, но он мой.

Содержание

  1. Мои репозитории по обучению
  2. С чего начать
    1. Установка Python
    2. Рабочее окружение
  3. Теперь пора учиться
    1. Junior
    2. Полезные ресурсы
    3. Обучение профессии
    4. Что дальше?
  4. Дополнительные материалы

Мои репозитории по обучению

Все свои материалы по обучению из различных репозиториев я решил скомпоновать в один и поместить как подпапки в Python Roadmap. (жалко, но он очень редко обновляется)
Collection of training lectures


С чего начать

Необходимо установить себе Python

  1. Для этого нужно скачать его с сайта python.org.
  2. Вам нужна IDE для работы. Список основных IDE можно увидеть на Wiki. Так же можно воспользоваться "продвинутыми" текстовыми редакторами. Мой список:
    1. PyCharm. Скачать можно с сайта JetBrains. Можно установить обе версии Professional и Community. Позже я скажу как можно получить/получать лицензию на три месяца.
    2. Visual Studio Code. Скачать можно с официального сайта: code.visualstudio.com.
    3. VSCodium. Сборка Visual Studio Code без телеметрии от Microsoft. Других отличий нет.
    4. Sublime Text 3. Скачать можно с официального сайта: sublimetext.com.
    5. Anaconda. Скачать можно с официального сайта: anaconda.com.
      • Немного о составе дистрибутива: anaconda.md

Мои рекомендации:

  1. Всех лучше для изучения подходят дистрибутивы PyCharm и Anaconda.
  2. Для удобства можно устанавливать две версии PyCharm, Professional и Community.

Сделать рабочее окружение

  1. Для создания рабочего окружения лучше всего подходит Python Virtual Environments. Прочитать можно в официальном PEP 405. Документацию можно прочитать на официальном сайте docs.python.org. Хорошая статья на python-script.com. Существуют модули, библиотеки, которые дополняют venv, но это уже сами.

    • Дополнительно: советую обратить внимание на проект PyEnv
  2. Научиться делать рабочее окружение в выбранных IDE.

Виртуальное окружение очень хорошо помогает в процессе обучения. Вы можете столкнуться с тем, что вам захочется поэкспериментировать с библиотеками или модулями, и, чтобы не засорять рабочее окружение, вы будете под каждую задачу создавать отдельный проект со своими модулями.

  1. Я очень советую научиться использовать консоль.
    • для Windows:
    • для GNU\Linux:
      • Курс "Введение в Linux". В рамках представленного курса слушатели познакомятся с операционной системой Linux и её базовыми возможностями. https://stepik.org/course/73
      • TBD ...

Важно! Нет, не так, очень ВАЖНО!

Flake8 - установите его и настройте.

Flake8 — инструмент, позволяющий просканировать код проекта и обнаружить в нем стилистические ошибки и нарушения различных конвенций кода на Python. Flake8 умеет работать не только с PEP 8, но и с другими правилами, к тому же поддерживает кастомные плагины.

  1. Для начало посмотрите видео от Хитрый питон Настраиваем flake8, чтобы улучшить качество кода
  2. Потом почитайте:
    1. PEP 8 *
    2. Google Code Style Python
    3. Советы Google по кодированию на языке Python.
    4. PyCharm + flake8 = от Ilya Lebedev.
    5. The Best flake8 Extensions for your Python Project
    6. Загляните в репозиторий awesome-flake8-extensions
    7. И обратите внимание на комментарий от Ilya Lebedev:

    We use all of them in wemake-python-styleguide ... which is flake8 extension too. Here you can find the full list of violations produced by these plugins: wemake-python-stylegui

В общем начните использовать Линтеры с самого начала обучения! Это реально очень важно для вас и для команды, в которой вы в дальнейшем будете работать.

Теперь пора учиться

С чего начать учиться? Я считаю, что самый простой способ это использовать онлайн курсы. Начинать нужно с простых, а дальше переходить к более сложным.

Начинаем с самого простого.

Возьмем большую шпаргалку по Python 3, распечатаем ее, и повесим или положим на самом видном месте.

Ссылка на файл: mementopython3-russian.pdf P.S. Она висит у меня на рабочем месте до сих пор.

А еще есть очень замечательный проект python-cheatsheet, просто кладезь полезной информации. Крайне рекомендую добавить в закладки.

А еще был подкаст "Python Junior" от MoscowPython и LearnPython, его нужно слушать или смотреть. Сейчас это просто подкаст про Python, но смотреть/слушать его нужно.

Также могу порекомендовать присоединиться к Python коммьюнити в вашем городе и к разным информационным каналам.

Telegram:

  1. https://t.me/ru_python - Уютный чат для профессионалов, занимающихся поиском питоньих мудростей.
  2. https://t.me/ru_python_beginners - Вопросы про Python для чайников. Cпам и троллинг неприемлем. Не злоупотребляйте стикерами.
  3. Если вы из Нижнего Новгорода, то вы всегда можете постучаться в RANNTS и чатик https://t.me/rannts - это Python Community of Nizhny Novgorod!

Junior

1. Программирование на Python

О КУРСЕ: Курс посвящен базовым понятиям и элементам языка программирования Python (операторы, числовые и строковые переменные, списки, условия и циклы). Курс является вводным и наиболее подойдет слушателям, не имеющим опыта написания программ ни на одном из языков программирования.

Cсылка: https://stepik.org/course/67/

Рекомендация: Выполняя задания и решая задачи вы можете получить лицензию от JetBrains на три месяца.

Затем продолжим закреплять пройденный материал с помощью следующего курса.

2. Алгоритмы: теория и практика. Методы

О КУРСЕ: В курсе будут подробно разобраны базовые алгоритмические методы: жадные алгоритмы, метод «разделяй и властвуй», динамическое программирование. Для всех алгоритмов будут математически строго доказаны корректность и оценки на время работы. Помимо теоретических основ будут рассказаны тонкости реализации алгоритмов на языках программирования C++, Java и Python.

Cсылка: https://stepik.org/course/217

3. Основы Git

О КУРСЕ: Система контроля версий Git является стандартом де-факто в деле управления исходным кодом и каждый разработчик должен понимать основы работы с ней. Задачей курса является описание наиболее важных команд и сценариев их использования.

Cсылка: https://stepik.org/course/3145/
Очень рекомендую книгу: ProGit (там же можно найти и версию на других языках)
Небольшая шпаргалка по командам из одного платного курса: https://github.com/GnuriaN/UDEMY_GIT

4. Python: основы и применение

О КУРСЕ: Курс посвящен базовым принципам языка Python и программирования в целом. Он хорошо подойдет тем, кто уже может писать простейшие программы на Python или тем, кто до этого программировал на других языках.

Cсылка: https://stepik.org/course/512/

Рекомендация: Выполняя задания и решая задачи вы можете получить лицензию от JetBrains на три месяца.

После этого можно проверить, что осталось у нас в голове. Заодно что-то освежить и немного попрактиковаться. Но перед этим уже пора познакомиться с системой контроля версий GIT.

5. Интерактивный учебник языка Питон

О Курсе: Учитесь, решая серьёзные задачи прямо в браузере. Основные плюсы:

  • Удобный визуализатор
  • Не нужно ничего устанавливать на компьютер: пишите и исполняйте код прямо в браузере
  • Отлаживайте код по шагам и смотрите за значениями переменных
  • Проверяйте правильность решения на разных входных и выходных данных
  • Визуализатор переводит и объясняет ошибки в программах
  • После решения задачи ознакомьтесь с образцовым решением

Cсылка: http://pythontutor.ru/

После этого стоит пройти еще один курс

6. Погружение в Python

О Курсе: В ходе курса вы изучите конструкции языка, типы и структуры данных, функции, научитесь применять объектно-ориентированное и функциональное программирование, узнаете про особенности реализации Python, научитесь писать асинхронный и многопоточный код. Помимо теории вас ждут практические задания, которые помогут проверить полученные знания и отточить навыки программирования на Python. После успешного окончания курса вы сможете использовать полученный опыт для разработки проектов различной сложности.

Ссылка: https://www.coursera.org/learn/diving-in-python

Зачем? Тут даётся то, что вы еще не проходили и повторение того, что вы уже проходили. К тому же, этот курс — это начало большой программы по специализации. Но перед этим нужно познакомиться с Базами данных.

7. Алгоритмы: теория и практика. Структуры данных

О Курсе: Основная цель курса — узнать, как устроены основные структуры данных (чтобы не пользоваться их готовыми реализациями как чёрным ящиком, а точно знать, чего от реализации ожидать), и научиться выбирать подходящую структуру данных при решении заданной вычислительной задачи.

Данный курс является продолжением курса «Алгоритмы: теория и практика. Методы». Если вы не проходили этот курс, мы настоятельно рекомендуем вам пройти хотя бы его первую неделю.

Ссылка: https://stepik.org/course/1547

8. Введение в базы данных

О Курсе: Курс введения в базы данных знакомит слушателями с историей создания систем обработки структурированных данных, подходами к обработке информации, развитием моделей данных и систем управления данными. Основу курса составляет изучение и применение в типовых ситуациях средств SQL для обработки данных в SQL-СУБД. Выполнение практических задач в рамках курса предполагает использование СУБД MySQL.

Ссылка: https://stepik.org/course/551

9. Базы данных

О Курсе: Основу курса составляют изучение и применение языка SQL для создания, модификации объектов баз данных и управления данными в произвольной реляционной базе данных. Выполнение практических задач в рамках курса предполагает использование СУБД My SQL. В курсе рассматриваются этапы проектирования реляционных баз данных, правила составления запросов, основные методы индексирования данных. В курсе будут изучены вопросы использования транзакций и прав доступа к данным. Также курс дает обзор современных тенденций в области науки о данных в связи с появлением BigData. В заключении курса будут показаны сферы применения NoSQL баз данных и указаны современные подходы к обработке big data.

Ссылка: https://stepik.org/course/2614

10. Тестирование ПО: Базовый уровень

Бонус для автотестеров

О Курсе: Данный курс основан на официальной программе обучения "Сертифицированный тестировщик ПО Базового уровня" ISTQB и предназначен для подготовки к сдаче сертификационных экзаменов.
Все тестовые задания, представленные в курсе, взяты из реальных экзаменов ISTQB Foundation Level..

Ссылка: https://stepik.org/course/16478

11. Автоматизация тестирования с помощью Selenium и Python

Бонус для автотестеров

О Курсе: Это базовый курс для начинающих тестировщиков, который научит вас писать автоматизированные UI-тесты на языке программирования Python с помощью библиотеки Selenium. А еще мы рассмотрим популярные фреймворки и хорошие практики написания автотестов.

Ссылка: https://stepik.org/course/575


Вот на этом этапе я могу порекомендовать читать интересные ресурсы, смотреть видео и практиковаться.

Полезные ресурсы по Python

Ссылка: https://refactoring.guru/ru/design-patterns/python

Рекомендация: Очень полезный ресурс, который раскажет о "Паттернах проектирования" на Python с примерами.


Как научиться разработке на Python: новый видеокурс Яндекса

Для изучения курса нужно знать основы Python и понимать, как приложения развёртываются на серверах. Мы ждём, что вы умеете делать запросы к базам данных и знаете, как создаются веб‑приложения, — хотя бы на начальном уровне.

Ссылка: https://habr.com/ru/company/yandex/blog/498856/

Рекомендация: Обратите внимание на дополнительные ссылки к видео.

Программирование на Python от CSC

Ссылка: https://compscicenter.ru/courses/python/2015-autumn/classes/

Рекомендация: Смотреть все. От начала до конца. Можно и нужно конспектировать то, что вы видите. Это будет очень полезно. В этом видео вы увидите то, что уже проходили, но там вам покажут некоторые нюансы того, как это происходит.

Комментарии: В настоящий момент (осень 2018 г.) на CSC идет новый курс лекций https://compscicenter.ru/courses/python/2018-autumn/classes/ но .... (дополнения в 2019 году) смотрите курс 2015 =)

Курс информатики на Python 3 от МФТИ

Ссылка: http://judge.mipt.ru/mipt_cs_on_python3/

Рекомендация: Смотреть на быстром просмотре. Отмечать интересные моменты и прорабатывать их.

Язык программирования Python от UNEEX

Ссылка: https://uneex.ru/LecturesCMC/PythonIntro2014 Ссылка: https://uneex.ru/LecturesCMC/PythonIntro2017

Рекомендации: Смотреть на быстром просмотре. Отмечать интересные моменты и прорабатывать их.

Видео с meetup'ов

python-videos-ru-2018

Ссылка: https://github.com/hH39797J/python-videos-ru-2018

Видео от Geekbrains

Ссылка: geekbrains_events.md

Видео от OTUS

Ссылка: Открытые уроки по Python


Дальше мы поговорим о специализациях (большие курсы по обучению). Эти курсы уже платные, и идти на них или нет - решать вам. В интернете очень много споров о том, нужны или не нужны курсы, ходить на них или нет. Мнений много. *Мое мнение: На курсы нужно ходить, когда у тебя уже есть определенный багаж знаний и возможность его использовать. Что дадут вам курсы:

  1. Помогут разложить информацию по полочкам.
  2. Дадут возможность познакомиться с людьми которые, так же как и вы, изучают Python.
  3. Развивать Soft Skills.

Обучение професии

1. Geekbrains.ru

На Geekbrains.ru сейчас (осень 2018 г.) есть два курса:

GeekUniversity

Ссылка: https://geekbrains.ru/geek_university/python

Программист Python

Ссылка: https://geekbrains.ru/professions/python_developer

Стоимость постоянно меняется. Бывают скидки.

2. LearnPython от MoscowPython

Ссылка: https://learn.python.ru

3. Специализация Программирование на Python от Coursera

Ссылка: https://www.coursera.org/specializations/programming-in-python

4. OTUS

Тут уже для продвинутых Junior.

Ссылка: https://otus.ru/lessons/razrabotchik-python/

Что дальше?

А дальше нужно определить направление, в котором вам интересно будет развиваться.

Дополнительные обучающие материалы

1. Обработка изображений

О Курсе: Курс начального уровня учит обработке изображений с помощью языка программирования Python. В курсе рассматриваются: устройство цифровых изображений, коррекция яркости и цвета изображения, фильтрация изображений, частотный анализ и устройство формата JPEG. Видео сопровождаются тестами и практическими заданиями на программирования, которые проверяются автоматически.

Ссылка: https://stepik.org/course/1280

2. Нейронные сети и компьютерное зрение

О Курсе: В этом курсе вы сделаете первые шаги в области компьютерного зрения с методами машинного обучения. Как мы этого добьёмся?

Для начала, мы пройдём основы нейронных сетей: как же какая-то абстрактная модель мышления, помещённая в компьютер, позволила обычным программистам просто так взять, и решить нерешённую ранее задачу зрения роботов. Мы изучим архитектуру и алгоритмы настройки нейросетей, приобретём глубокое понимание всего, что происходит после нажатия "Запустить обучение". Мы разберём, как лучше представить задачу для нейронной сети, поскольку не все постановки в принципе разрешимы, и в этом нам поможет метод максимального правдоподобия.

Ссылка: https://stepik.org/course/50352

3. Курс Deep Learning (2019-2020): базовый поток

О Курсе: познакомить слушателей с теорией и практикой глубокого обучения (нейронных сетей) в интерактивном формате. Мы ведём как очные, так и заочные занятия. Cайт: dlschool.org Группа ВК: https://vk.com/dlschool_mipt

Ссылка: https://stepik.org/course/57839

4. Курс Deep Learning (2019-2020): продвинутый поток

О Курсе: познакомить слушателей с теорией и практикой глубокого обучения (нейронных сетей) в интерактивном формате. Мы ведём как очные, так и заочные занятия. Cайт: dlschool.org Группа ВК: https://vk.com/dlschool_mipt

Ссылка: https://stepik.org/course/57457


./img/roadmap.png Нашел на просторах интернета. Точного автора не знаю.

А это моя версия для выбора направлений:

./img/roadmap.png

Owner
Ruslan Prokhorov
Knowledge is not redundant if they have something in common. #Python, #ITSec, #Dev, #QAA, #Ops, #DevOps
Ruslan Prokhorov
Este software fornece interface gráfica para o escputil e tem por finalidade testar e fazer limpeza no cabeçote de impressão....

PrinterTools O que é PrinterTools? PrinterTools é uma ferramenta gráfica que usa o escputil para testar e fazer limpeza de cabeçote de impressão em si

Elizeu Barbosa Abreu 1 Dec 21, 2021
ThnoolBox - A thneed is a multi-use versatile object

ThnoolBox Have you ever wanted a collection of bodged desktop apps that are Lorax themed ? No ? Sucks to suck I guess Apps & their downsides CalculaTh

pocoyo 1 Jan 21, 2022
This is a program for Carbon Emission calculator.

Summary This is a program for Carbon Emission calculator. Usage This will calculate the carbon emission by each person on various factors. Contributor

Ankit Rane 2 Feb 18, 2022
This is a Python 3.10 port of mock, a library for manipulating human-readable message strings.

This is a Python 3.10 port of mock, a library for manipulating human-readable message strings.

Alexander Bartolomey 1 Dec 31, 2021
This is an implementation of NeuronJ work with python.

NeuronJ This is an implementation of NeuronJ work with python. NeuronJ is a plug-in for ImageJ that allows you to create and edit neurons masks. Image

Mohammad Mahdi Samei 3 Aug 28, 2022
Code needed for hybrid land cover change analysis for NASA IDS project

Documentation for the NASA IDS change analysis Poley 10/21/2021 Required python packages: whitebox numpy rasterio rasterio.mask os glob math itertools

Andrew Poley 2 Nov 12, 2021
MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.

MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.

Suraj Malhotra 138 Jan 07, 2023
Python client library for the Databento API

Databento Python Library The Databento Python client library provides access to the Databento API for both live and historical data, from applications

Databento, Inc. 35 Dec 24, 2022
Esercizi di Python svolti per il biennio di Tecnologie Informatiche.

Esercizi di Python Un piccolo aiuto per Sofia che nel 2° quadrimestre inizierà Python :) Questo repository (termine tecnico di Git) puoi trovare tutti

Leonardo Essam Dei Rossi 2 Nov 07, 2022
A Python Perforce package that doesn't bring in any other packages to work.

P4CMD 🌴 A Python Perforce package that doesn't bring in any other packages to work. Relies on p4cli installed on the system. p4cmd The p4cmd module h

Niels Vaes 13 Dec 19, 2022
Learning a Little about Containerlab

Learning a Little about Containerlab Hello all. This is the respository based on this blog post. Getting Started Feel free to use this example. You wi

10 Oct 16, 2022
Incident Response Process and Playbooks | Goal: Playbooks to be Mapped to MITRE Attack Techniques

PURPOSE OF PROJECT That this project will be created by the SOC/Incident Response Community Develop a Catalog of Incident Response Playbook for every

Austin Songer 987 Jan 02, 2023
Hacktoberfest2021 🥳- Contribute Any Pattern In Any Language😎 Every PR will be accepted Pls contribute

✨ Hacktober Fest 2021 ✨ 🙂 All Contributors are requested to star this repo and follow me for a successful merge of pull request. 🙂 👉 Add any patter

Md. Almas Ali 103 Jan 07, 2023
PressurePlate is a multi-agent environment that requires agents to cooperate during the traversal of a gridworld.

PressurePlate is a multi-agent environment that requires agents to cooperate during the traversal of a gridworld. The grid is partitioned into several rooms, and each room contains a plate and a clos

Autonomous Agents Research Group (University of Edinburgh) 6 Dec 03, 2022
A desktop app to check the unlocked courses bases on previously done courses.

Course Picker A desktop app to check the unlocked courses bases on previously done courses. Table of contents About the Project Built with What it doe

Ahmed Symum Swapno 3 Feb 07, 2022
Library support get vocabulary from MEM

Features: Support scraping the courses in MEM to take the vocabulary Translate the words to your own language Get the IPA for the English course Insta

Joseph Quang 4 Aug 13, 2022
Scripts to integrate DFIR-IRIS, MISP and TimeSketch

Scripts to integrate DFIR-IRIS, MISP and TimeSketch

Koen Van Impe 20 Dec 16, 2022
Some usefull scripts for the Nastran's 145 solution (Flutter Analysis) using the pyNastran package.

nastran-aero-flutter This project is intended to analyse the Supersonic Panel Flutter using the NASTRAN software. The project uses the pyNastran and t

zuckberj 11 Nov 16, 2022
A system for assigning and grading notebooks

nbgrader Linux: Windows: Forum: Coverage: Cite: A system for assigning and grading Jupyter notebooks. Documentation can be found on Read the Docs. Hig

Project Jupyter 1.2k Dec 26, 2022
Wrapper for the undocumented CodinGame API. Can be used both synchronously and asynchronlously.

codingame API wrapper Pythonic wrapper for the undocumented CodinGame API. Installation Python 3.6 or higher is required. Install codingame with pip:

Takos 19 Jun 20, 2022