Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Overview

Amber Electric Usage Summary

This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

You simply need to provide your Amber API token, and the tool will output a CSV like this for the last 12 months:

CHANNEL                         , 2020-09-01, 2020-09-02, 2020-09-03, ...
B4 (FEED_IN) Usage (kWh)        ,      1.351,      0.463,      0.447, ...
E3 (CONTROLLED_LOAD) Usage (kWh),      2.009,      2.669,      2.757, ...
E4 (GENERAL) Usage (kWh)        ,     20.400,     20.965,     16.011, ...

About Amber Electric

Amber Electric is an innovative energy retailer in Australia which gives customers access to the wholesale energy price as determined by the National Energy Market. This gives customers the opportunity to reduce their bills and their reliance on fossil fuels by shifting their biggest energy usage to times of the day when energy is cheaper and greener.

Amber's API

Amber gives customers access to a LOT of their own data through their public Application Programming Interface or API.

This tool relies on you having access to Amber's API, which means you need to be an Amber customer, and you need to get an API token. But that's pretty easy. Start here.

How To Get The Tool

If you're a programmer comfortable with Git, I'm sure you already know how to get this code onto your machine from GitHub.

If you're not familiar with Git, you can download this code as a Zip file by clicking on this link. Once it's downloaded, unzip the file, which will create a directory containing all the files of this project.

How To Use It

Pre-Requisites

You'll need Python 3.9+ installed.

And an Amber API token. (See above)

Setup

Using a terminal, in the directory of this project:

  1. Create a Python virtual environment with this command:
python3.9  -m  venv  venv
  1. Start using the virtual environment with this command:
source  ./venv/bin/activate
  1. Install the required dependencies with this command:
python  -m  pip  install  -r  requirements.txt

Running the tool

Using a terminal, in the directory of this project:

  1. Start using the virtual environment with this command:
source  ./venv/bin/activate
  1. Run the tool with this command, replacing YOUR_API_TOKEN with your own API token:
python  amber_usage_summary.py  --api-token  YOUR_API_TOKEN  >  my_amber_usage_data.csv

Using the above, your summary consumption data for the last year will be saved to the file called my_amber_usage_data.csv in the same directory.

Options

Help

Run the script with the -h option to see its help page:

python  amber_usage_summary.py  -h

API Token File

If you'd prefer not to paste your API token into a terminal command, you can save it in a file called apitoken in the project's directory.

Costs Summary

By default, the tool just outputs energy consumption data. If you also want a summary of your cost data, add the --include-cost option:

python  amber_usage_summary.py  --include-cost

Site Selection

If you have multiple sites in your Amber Electric account, you'll need to select one using the --site-id option:

python  amber_usage_summary.py  --site-id  SITE_ID_YOU_WANT_DATA_FOR

Date Range

By default, the report includes the last 12 full calendar months of data, plus all of the current month's data up until yesterday. You can select what date range to include in the output by adding and start date and, optionally, an end date to the command.

python  amber_usage_summary.py  2020-07-01  2021-06-30

Contributions

I'm open to accepting contributions that improve the tool.

If you're planning on altering the code with the intention of contributing the changes back, it'd be great to have a chat about it first to check we're on the same page about how the improvement might be added. It's probably easiest to create an issue describing your planned improvement (and being clear that you plan to implement it yourself).

License

All files in this project are licensed under the 3-clause BSD License. See LICENSE.md for details.

Owner
Graham Lea
Graham Lea
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Yongxian (Caroline) Lun 1 Dec 27, 2021
Get mutations in cluster by querying from LAPIS API

Cluster Mutation Script Get mutations appearing within user-defined clusters. Usage Clusters are defined in the clusters dict in main.py: clusters = {

neherlab 1 Oct 22, 2021
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenari

epispot 12 Dec 28, 2022
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Python for Data 866 Dec 16, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021