Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Overview

Amber Electric Usage Summary

This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

You simply need to provide your Amber API token, and the tool will output a CSV like this for the last 12 months:

CHANNEL                         , 2020-09-01, 2020-09-02, 2020-09-03, ...
B4 (FEED_IN) Usage (kWh)        ,      1.351,      0.463,      0.447, ...
E3 (CONTROLLED_LOAD) Usage (kWh),      2.009,      2.669,      2.757, ...
E4 (GENERAL) Usage (kWh)        ,     20.400,     20.965,     16.011, ...

About Amber Electric

Amber Electric is an innovative energy retailer in Australia which gives customers access to the wholesale energy price as determined by the National Energy Market. This gives customers the opportunity to reduce their bills and their reliance on fossil fuels by shifting their biggest energy usage to times of the day when energy is cheaper and greener.

Amber's API

Amber gives customers access to a LOT of their own data through their public Application Programming Interface or API.

This tool relies on you having access to Amber's API, which means you need to be an Amber customer, and you need to get an API token. But that's pretty easy. Start here.

How To Get The Tool

If you're a programmer comfortable with Git, I'm sure you already know how to get this code onto your machine from GitHub.

If you're not familiar with Git, you can download this code as a Zip file by clicking on this link. Once it's downloaded, unzip the file, which will create a directory containing all the files of this project.

How To Use It

Pre-Requisites

You'll need Python 3.9+ installed.

And an Amber API token. (See above)

Setup

Using a terminal, in the directory of this project:

  1. Create a Python virtual environment with this command:
python3.9  -m  venv  venv
  1. Start using the virtual environment with this command:
source  ./venv/bin/activate
  1. Install the required dependencies with this command:
python  -m  pip  install  -r  requirements.txt

Running the tool

Using a terminal, in the directory of this project:

  1. Start using the virtual environment with this command:
source  ./venv/bin/activate
  1. Run the tool with this command, replacing YOUR_API_TOKEN with your own API token:
python  amber_usage_summary.py  --api-token  YOUR_API_TOKEN  >  my_amber_usage_data.csv

Using the above, your summary consumption data for the last year will be saved to the file called my_amber_usage_data.csv in the same directory.

Options

Help

Run the script with the -h option to see its help page:

python  amber_usage_summary.py  -h

API Token File

If you'd prefer not to paste your API token into a terminal command, you can save it in a file called apitoken in the project's directory.

Costs Summary

By default, the tool just outputs energy consumption data. If you also want a summary of your cost data, add the --include-cost option:

python  amber_usage_summary.py  --include-cost

Site Selection

If you have multiple sites in your Amber Electric account, you'll need to select one using the --site-id option:

python  amber_usage_summary.py  --site-id  SITE_ID_YOU_WANT_DATA_FOR

Date Range

By default, the report includes the last 12 full calendar months of data, plus all of the current month's data up until yesterday. You can select what date range to include in the output by adding and start date and, optionally, an end date to the command.

python  amber_usage_summary.py  2020-07-01  2021-06-30

Contributions

I'm open to accepting contributions that improve the tool.

If you're planning on altering the code with the intention of contributing the changes back, it'd be great to have a chat about it first to check we're on the same page about how the improvement might be added. It's probably easiest to create an issue describing your planned improvement (and being clear that you plan to implement it yourself).

License

All files in this project are licensed under the 3-clause BSD License. See LICENSE.md for details.

Owner
Graham Lea
Graham Lea
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
Cleaning and analysing aggregated UK political polling data.

Analysing aggregated UK polling data The tweet collection & storage pipeline used in email-service is used to also collect tweets from @britainelects.

Ajay Pethani 0 Dec 22, 2021
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
Extract Thailand COVID-19 Cluster data from daily briefing pdf.

Thailand COVID-19 Cluster Data Extraction About Extract Clusters from Thailand Daily COVID-19 briefing PDF Download latest data Here. Data will be upd

Noppakorn Jiravaranun 5 Sep 27, 2021
PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams Motivation When dataset freshness is critical, the annotating of high speed

4 Aug 02, 2022
Office365 (Microsoft365) audit log analysis tool

Office365 (Microsoft365) audit log analysis tool The header describes it all WHY?? The first line of code was written long time before other colleague

Anatoly 1 Jul 27, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
Vectorizers for a range of different data types

Vectorizers for a range of different data types

Tutte Institute for Mathematics and Computing 69 Dec 29, 2022
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
Extract data from a wide range of Internet sources into a pandas DataFrame.

pandas-datareader Up to date remote data access for pandas, works for multiple versions of pandas. Installation Install using pip pip install pandas-d

Python for Data 2.5k Jan 09, 2023
A fast, flexible, and performant feature selection package for python.

linselect A fast, flexible, and performant feature selection package for python. Package in a nutshell It's built on stepwise linear regression When p

88 Dec 06, 2022