Deep High-Resolution Representation Learning for Human Pose Estimation

Overview

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019)

News

Introduction

This is an official pytorch implementation of Deep High-Resolution Representation Learning for Human Pose Estimation. In this work, we are interested in the human pose estimation problem with a focus on learning reliable high-resolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process. We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutli-resolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich high-resolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset.

Illustrating the architecture of the proposed HRNet

Main Results

Results on MPII val

Arch Head Shoulder Elbow Wrist Hip Knee Ankle Mean [email protected]
pose_resnet_50 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5 34.0
pose_resnet_101 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1 34.0
pose_resnet_152 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6 35.0
pose_hrnet_w32 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 37.7

Note:

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_resnet_50 256x192 34.0M 8.9 0.704 0.886 0.783 0.671 0.772 0.763 0.929 0.834 0.721 0.824
pose_resnet_50 384x288 34.0M 20.0 0.722 0.893 0.789 0.681 0.797 0.776 0.932 0.838 0.728 0.846
pose_resnet_101 256x192 53.0M 12.4 0.714 0.893 0.793 0.681 0.781 0.771 0.934 0.840 0.730 0.832
pose_resnet_101 384x288 53.0M 27.9 0.736 0.896 0.803 0.699 0.811 0.791 0.936 0.851 0.745 0.858
pose_resnet_152 256x192 68.6M 15.7 0.720 0.893 0.798 0.687 0.789 0.778 0.934 0.846 0.736 0.839
pose_resnet_152 384x288 68.6M 35.3 0.743 0.896 0.811 0.705 0.816 0.797 0.937 0.858 0.751 0.863
pose_hrnet_w32 256x192 28.5M 7.1 0.744 0.905 0.819 0.708 0.810 0.798 0.942 0.865 0.757 0.858
pose_hrnet_w32 384x288 28.5M 16.0 0.758 0.906 0.825 0.720 0.827 0.809 0.943 0.869 0.767 0.871
pose_hrnet_w48 256x192 63.6M 14.6 0.751 0.906 0.822 0.715 0.818 0.804 0.943 0.867 0.762 0.864
pose_hrnet_w48 384x288 63.6M 32.9 0.763 0.908 0.829 0.723 0.834 0.812 0.942 0.871 0.767 0.876

Note:

Results on COCO test-dev2017 with detector having human AP of 60.9 on COCO test-dev2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_resnet_152 384x288 68.6M 35.3 0.737 0.919 0.828 0.713 0.800 0.790 0.952 0.856 0.748 0.849
pose_hrnet_w48 384x288 63.6M 32.9 0.755 0.925 0.833 0.719 0.815 0.805 0.957 0.874 0.763 0.863
pose_hrnet_w48* 384x288 63.6M 32.9 0.770 0.927 0.845 0.734 0.831 0.820 0.960 0.886 0.778 0.877

Note:

Environment

The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 4 NVIDIA P100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick start

Installation

  1. Install pytorch >= v1.0.0 following official instruction. Note that if you use pytorch's version < v1.0.0, you should following the instruction at https://github.com/Microsoft/human-pose-estimation.pytorch to disable cudnn's implementations of BatchNorm layer. We encourage you to use higher pytorch's version(>=v1.0.0)

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python3 setup.py install --user
    

    Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

  6. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    ├── data
    ├── experiments
    ├── lib
    ├── log
    ├── models
    ├── output
    ├── tools 
    ├── README.md
    └── requirements.txt
    
  7. Download pretrained models from our model zoo(GoogleDrive or OneDrive)

    ${POSE_ROOT}
     `-- models
         `-- pytorch
             |-- imagenet
             |   |-- hrnet_w32-36af842e.pth
             |   |-- hrnet_w48-8ef0771d.pth
             |   |-- resnet50-19c8e357.pth
             |   |-- resnet101-5d3b4d8f.pth
             |   `-- resnet152-b121ed2d.pth
             |-- pose_coco
             |   |-- pose_hrnet_w32_256x192.pth
             |   |-- pose_hrnet_w32_384x288.pth
             |   |-- pose_hrnet_w48_256x192.pth
             |   |-- pose_hrnet_w48_384x288.pth
             |   |-- pose_resnet_101_256x192.pth
             |   |-- pose_resnet_101_384x288.pth
             |   |-- pose_resnet_152_256x192.pth
             |   |-- pose_resnet_152_384x288.pth
             |   |-- pose_resnet_50_256x192.pth
             |   `-- pose_resnet_50_384x288.pth
             `-- pose_mpii
                 |-- pose_hrnet_w32_256x256.pth
                 |-- pose_hrnet_w48_256x256.pth
                 |-- pose_resnet_101_256x256.pth
                 |-- pose_resnet_152_256x256.pth
                 `-- pose_resnet_50_256x256.pth
    
    

Data preparation

For MPII data, please download from MPII Human Pose Dataset. The original annotation files are in matlab format. We have converted them into json format, you also need to download them from OneDrive or GoogleDrive. Extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- mpii
    `-- |-- annot
        |   |-- gt_valid.mat
        |   |-- test.json
        |   |-- train.json
        |   |-- trainval.json
        |   `-- valid.json
        `-- images
            |-- 000001163.jpg
            |-- 000003072.jpg

For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. We also provide person detection result of COCO val2017 and test-dev2017 to reproduce our multi-person pose estimation results. Please download from OneDrive or GoogleDrive. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        |   |-- COCO_test-dev2017_detections_AP_H_609_person.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- 000000000030.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- 000000000632.jpg
                |-- ... 

Training and Testing

Testing on MPII dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_mpii/pose_hrnet_w32_256x256.pth

Training on MPII dataset

python tools/train.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml

Testing on COCO val2017 dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth \
    TEST.USE_GT_BBOX False

Training on COCO train2017 dataset

python tools/train.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \

Other applications

Many other dense prediction tasks, such as segmentation, face alignment and object detection, etc. have been benefited by HRNet. More information can be found at Deep High-Resolution Representation Learning.

Citation

If you use our code or models in your research, please cite with:

@inproceedings{sun2019deep,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={CVPR},
  year={2019}
}

@inproceedings{xiao2018simple,
    author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
    title={Simple Baselines for Human Pose Estimation and Tracking},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2018}
}
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022