This is the repo for Uncertainty Quantification 360 Toolkit.

Overview

UQ360

Build Status Documentation Status

The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncertainty, as well as capabilities to measure and improve UQ to streamline the development process. We provide a taxonomy and guidance for choosing these capabilities based on the user's needs. Further, UQ360 makes the communication method of UQ an integral part of development choices in an AI lifecycle. Developers can make a user-centered choice by following the psychology-based guidance on communicating UQ estimates, from concise descriptions to detailed visualizations.

The UQ360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your uncertianty estimation algorithms, metrics and applications. To get started as a contributor, please join the #uq360-users or #uq360-developers channel of the AIF360 Community on Slack by requesting an invitation here.

Supported Uncertainty Evaluation Metrics

The toolbox provides several standard calibration metrics for classification and regression tasks. This includes Expected Calibration Error (Naeini et al., 2015), Brier Score (Murphy, 1973), etc for classification models. Regression metrics include Prediction Interval Coverage Probability (PICP) and Mean Prediction Interval Width (MPIW) among others. The toolbox also provides a novel operation-point agnostic approaches for the assessment of prediction uncertainty estimates called the Uncertainty Characteristic Curve (UCC). Several metrics and diagnosis tools such as reliability diagram (Niculescu-Mizil & Caruana, 2005) and risk-vs-rejection rate curves are provides which also support analysis by sub-groups in the population to study fairness implications of acting on given uncertainty estimates.

Supported Uncertainty Estimation Algorithms

UQ algorithms can be broadly classified as intrinsic or extrinsic depending on how the uncertainties are obtained from the AI models. Intrinsic methods encompass models that inherently provides an uncertainty estimate along with its predictions. The toolkit includes algorithms such as variational Bayesian neural networks (BNNs) (Graves, 2011), Gaussian processes (Rasmussen and Williams,2006), quantile regression (Koenker and Bassett, 1978) and hetero/homo-scedastic neuralnetworks (Kendall and Gal, 2017) which are models that fall in this category The toolkit also includes Horseshoe BNNs (Ghosh et al., 2019) that use sparsity promoting priors and can lead to better-calibrated uncertainties, especially in the small data regime. An Infinitesimal Jackknife (IJ) based algorithm (Ghosh et al., 2020)), provided in the toolkit, is a perturbation-based approach that perform uncertainty quantification by estimating model parameters under different perturbations of the original data. Crucially, here the estimation only requires the model to be trained once on the unperturbed dataset. For models that do not have an inherent notion of uncertainty built into them, extrinsic methods are employed to extract uncertainties post-hoc. The toolkit provides meta-models (Chen et al., 2019)that can be been used to successfully generate reliable confidence measures (in classification), prediction intervals (in regression), and to predict performance metrics such as accuracy on unseen and unlabeled data. For pre-trained models that captures uncertainties to some degree, the toolbox provides extrinsic algorithms that can improve the uncertainty estimation quality. This includes isotonic regression (Zadrozny and Elkan, 2001), Platt-scaling (Platt, 1999), auxiliary interval predictors (Thiagarajan et al., 2020), and UCC-Recalibration.

Setup

Supported Configurations:

OS Python version
macOS 3.7
Ubuntu 3.7
Windows 3.7

(Optional) Create a virtual environment

A virtual environment manager is strongly recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

Conda

Conda is recommended for all configurations though Virtualenv is generally interchangeable for our purposes. Miniconda is sufficient (see the difference between Anaconda and Miniconda if you are curious) and can be installed from here if you do not already have it.

Then, to create a new Python 3.7 environment, run:

conda create --name uq360 python=3.7
conda activate uq360

The shell should now look like (uq360) $. To deactivate the environment, run:

(uq360)$ conda deactivate

The prompt will return back to $ or (base)$.

Note: Older versions of conda may use source activate uq360 and source deactivate (activate uq360 and deactivate on Windows).

Installation

Clone the latest version of this repository:

(uq360)$ git clone https://github.ibm.com/UQ360/UQ360

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in their respective folders as described in uq360/datasets/data/README.md.

Then, navigate to the root directory of the project which contains setup.py file and run:

(uq360)$ pip install -e .

PIP Installation of Uncertainty Quantification 360

If you would like to quickly start using the UQ360 toolkit without cloning this repository, then you can install the uq360 pypi package as follows.

(your environment)$ pip install uq360

If you follow this approach, you may need to download the notebooks in the examples folder separately.

Using UQ360

The examples directory contains a diverse collection of jupyter notebooks that use UQ360 in various ways. Both examples and tutorial notebooks illustrate working code using the toolkit. Tutorials provide additional discussion that walks the user through the various steps of the notebook. See the details about tutorials and examples here.

Citing UQ360

A technical description of UQ360 is available in this paper. Below is the bibtex entry for this paper.

@misc{uq360-june-2021,
      title={Uncertainty Quantification 360: A Holistic Toolkit for Quantifying 
      and Communicating the Uncertainty of AI}, 
      author={Soumya Ghosh and Q. Vera Liao and Karthikeyan Natesan Ramamurthy 
      and Jiri Navratil and Prasanna Sattigeri 
      and Kush R. Varshney and Yunfeng Zhang},
      year={2021},
      eprint={2106.01410},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Acknowledgements

UQ360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include:

License Information

Please view both the LICENSE file present in the root directory for license information.

Owner
International Business Machines
International Business Machines
A free and open-source chess improvement app that combines the power of Lichess and Anki.

A free and open-source chess improvement app that combines the power of Lichess and Anki. Chessli Project Activity & Issue Tracking PyPI Build & Healt

93 Nov 23, 2022
App and Python library for parsing, writing, and validation of the STAND013 file format.

python-stand013 python-stand013 is a Python app and library for parsing, writing, and validation of the STAND013 file format. Features The following i

Oda 3 Nov 09, 2022
A proof-of-concept package manager for Cairo contracts/libraries

glyph A proof-of-concept package manager for Cairo contracts/libraries. Distribution through pypi. Installation through existing package managers -- p

Sam Barnes 11 Jun 06, 2022
Script to quickly get the metrics from Github repos to analyze.

commit-prefix-analysis Script to quickly get the metrics from Github repos to analyze. Setup Install the Github CLI. You'll know its working when runn

David Carpenter 1 Dec 17, 2022
Official repository for the BPF Performance Tools book

BPF Performance Tools This is the official repository of BPF (eBPF) tools from the book BPF Performance Tools: Linux and Application Observability. Th

Brendan Gregg 1.2k Dec 28, 2022
Python Excuse Generator

Excuse Generator Python Excuse Generator This project is an excuse generator that provides the user with an excuse as to why they weren't paying atten

Collin Sanders 5 Jul 07, 2022
A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts

๐Ÿ“‘ Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Amitesh kumar mishra 1 Jan 22, 2022
The worst and slowest programming language you have ever seen

VenumLang this is a complete joke EXAMPLE: fizzbuzz in venumlang x = 0

Venum 7 Mar 12, 2022
Chemical Analysis Calculator, with full solution display.

Chemicology Chemical Analysis Calculator, to solve problems efficiently by displaying whole solution. Go to releases for downloading .exe, .dmg, Linux

Muhammad Moazzam 2 Aug 06, 2022
Reso is a low-level circuit design language and simulator, inspired by things like Redstone, Conway's Game of Life, and Wireworld.

Reso Reso is a low-level circuit design language and simulator, inspired by things like Redstone, Conway's Game of Life, and Wireworld. What is Reso?

Lynn 287 Nov 26, 2022
Hotpile: High Order Turing Machine Language Compiler

Hotpile: High Order Turing Machine Language Compiler Build and Run Requirements: Python 3.6+, bison, flex, and GCC installed. Needs to be run under UN

Jiang Weihao 4 Dec 29, 2021
Hoopoe - Get notified of important stuff, right away.

Hoopoe - Get notified of important stuff, right away. Report a Bug ยท Request a Feature . Ask a Question Table of Contents About Getting Started Prereq

Vahid Al 8 Nov 12, 2022
Demo content - Automate your automation!

Automate-AAP2 Demo Content - Automate your automation! A fully automated Ansible Automation Platform. Context Installing and configuring Ansible Autom

0 Oct 27, 2022
Tool to automate the enumeration of a website (CTF)

had4ctf Tool to automate the enumeration of a website (CTF) DISCLAIMER: THE TOOL HAS BEEN DEVELOPED SOLELY FOR EDUCATIONAL PURPOSE ,I WILL NOT BE LIAB

Had 2 Oct 24, 2021
DNA Storage Simulator that analyzes and simulates DNA storage

DNA Storage Simulator This monorepository contains code for a research project by Mayank Keoliya and supervised by Djordje Jevdjic, that analyzes and

Mayank Keoliya 3 Sep 25, 2022
Simple GUI menu for micropython using a rotary encoder and basic display.

Micropython encoder based menu This is a simple menu system written in micropython. It uses a switch, a rotary encoder and an OLED display.

80 Jan 07, 2023
A corona information module

A corona information module

Fayas Noushad 3 Nov 28, 2021
Test for using pyIIIFpres for rara magnetica project

raramagnetica_pyIIIFpres Test for using pyIIIFpres for rara magnetica project. This test show how to use pyIIIFpres for creating mannifest compliant t

Giacomo Marchioro 1 Dec 03, 2021
pybind11 โ€” Seamless operability between C++11 and Python

pybind11 โ€” Seamless operability between C++11 and Python Setuptools example โ€ข Scikit-build example โ€ข CMake example pybind11 is a lightweight header-on

pybind 12.1k Jan 08, 2023