NLP project that works with news (NER, context generation, news trend analytics)

Overview

СоАвтор

СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента максимально комфортным и быстрым.

Инструменты для СоАвтора разрабатываются на основе открытой аналитической платформы OT. В ближайших планах полная интеграция приложения с платформой: сбор и обработка данных, запуск аналитических алгоритмов, а также сборка и запуск приложения будет осуществляться на платформе. Публичный репозиторий с инструментами платформы OT coming soon.

Сейчас мы разрабатываем следующие инструменты:

  • Отслеживание событий и трендов в режиме реального времени (работа со структурированными новостными форматами и парсинг новостных источников). Для этого мы пишем модуль для непрерывного парсинга новостных изданий и придумываем, как отслеживать информативные изменения в статьях.
  • Подбор релевантных статей к готовому материалу для автоматического формирования модуля бэкграунда (справочной информации или предыстории события). Для этого мы используем инструменты для поиска семантически похожих текстов в архиве и инструменты для генерации саммари из нескольких документов.

Разработка ведется вместе с профессиональным сообществом, чтобы сделать рабочий процесс для редакций и фрилансеров максимально удобным. Платформа "СоАвтор" имеет модульную структуру. Вы можете придумать новый инструмент, который упрощает работу с текстом, или принять участие в работе над теми, что уже в разработке. Вступайте в наше сообщество на Discord и присылайте свои #идеи того, как можно использовать “СоАвтор” при работе с контентом.

СоАвтор интерфейс


English below


Запустить приложение у себя

Установка

  1. Скачайте файлы проекта или сделайте форк и воспользуйтесь командой git clone
  2. Скачайте файлы с данными: ru_stopwords.txt и news_df.parquet
  3. Скачайте файлы моделей: rubert_tiny и rut5_base_sum
  4. Откройте терминал и перейдите в директорию проекта
  5. Используйте pip install requirements.txt, чтобы установить все нужные библиотеки

Запуск

  1. Поменяйте в файле config.yaml пути к файлам данных и моделям
  2. Откройте терминал и перейдите в директорию проекта
  3. Наберите в терминале команду streamlit run menu.py
  4. Приложение по умолчанию будет доступно по адресу http://localhost:8501 P.S.: приложение можно запустить на своём датасете, если будет соблюдён формат. Пример датасета и описание формата в директории data.

Как участвовать в разработке проекта

Текущие задачи

  1. Обновляемая лента новостей
  2. Модуль для подключения к соцсетям
  3. Анализ трендов по постам из социальных сетей
  4. Классификация evergreen новостей

Помочь решить одну из текущих проблем

  1. Проверьте есть ли открытые проблемы в Issues и выберите одну из них
  2. Если у вас есть своя идея, как законтрибьютить в этот проект, откройте в Issues новый тикет (как это сделать, описано ниже).
  3. Сделайте форк проекта, начните работать над тикетом и внесите свои изменения через pull request.

Добавить проблему (issue)

  1. Если вы нашли баг или недоработку, мы будем признательны, если вы оставите её описание в разделе Issues с тегом bug.
  2. Если у вас есть вопросы по функционалу или вы не понимаете баг это или фича, оставьте нам вопрос в разделе Issues с тегом question.
  3. Если у вас есть идея, какие возможности вы хотели бы ещё видеть в приложении, но не уверены, что можете их самостоятельно реализовать, добавьте описание идеи в раздел Issues с тегом enhancement.

Что ещё я могу делать

  1. Принять участие в обсуждении этого проекта или ваших собственных идей в дискорде нашего сообщества WellnessDataClub.
  2. Взять СоАвтор за основу для разработки собственного open source продукта. СоАвтор сейчас работает с новостями и соцсетями, вы можете начать работать с другим типом данных :)
  3. Примите участие в другом нашем open source проекте OpenMask

Launch this project locally

Installation

  1. Download project files or make fork and use git clone
  2. Download data files: ru_stopwords.txt и news_df.parquet
  3. Download models: rubert_tiny и rut5_base_sum
  4. Using the terminal, change directory to the project's directory
  5. Use pip install requirements.txt

Launch

  1. Change paths to the data and models inside config.yaml
  2. Using the terminal, change directory to the project's directory
  3. Run streamlit run menu.py
  4. The app is available with http://localhost:8501 by default P.S.: this app can be launched with your own data in the right format Dataset example, format description are in the data directory.

How to participate in this project

Current tasks

  1. Updating news feed
  2. One module to collect social network data
  3. Trend analysis based on social network posts
  4. Evergreen news classification

Help to resolve one of current issues

  1. Check if there is an open issue that you'd like to solve
  2. If you have your own idea or see a bug, add a new issue (instructions below)
  3. Make fork from this project, make changes and add them with new pull request.

Add an issue

  1. Add bugs or smth that has to be finished to Issues with bug tag.
  2. If you have questions about functionality or code ask in Issues withquestion tag.
  3. If you have some ideas about new functions, suggest it in Issues with enhancement tag.

What else can I do

  1. Take part in the discussion of this project or your own ideas with our Discord community WellnessDataClub.
  2. Use this project as a base for your own open source product. We now work with news, you csn choose another data type :)
  3. Become a part of our another project OpenMask
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
A python gui program to generate reddit text to speech videos from the id of any post.

Reddit text to speech generator A python gui program to generate reddit text to speech videos from the id of any post. Current functionality Generate

Aadvik 17 Dec 19, 2022
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022
189 Jan 02, 2023
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022