NLP project that works with news (NER, context generation, news trend analytics)

Overview

СоАвтор

СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента максимально комфортным и быстрым.

Инструменты для СоАвтора разрабатываются на основе открытой аналитической платформы OT. В ближайших планах полная интеграция приложения с платформой: сбор и обработка данных, запуск аналитических алгоритмов, а также сборка и запуск приложения будет осуществляться на платформе. Публичный репозиторий с инструментами платформы OT coming soon.

Сейчас мы разрабатываем следующие инструменты:

  • Отслеживание событий и трендов в режиме реального времени (работа со структурированными новостными форматами и парсинг новостных источников). Для этого мы пишем модуль для непрерывного парсинга новостных изданий и придумываем, как отслеживать информативные изменения в статьях.
  • Подбор релевантных статей к готовому материалу для автоматического формирования модуля бэкграунда (справочной информации или предыстории события). Для этого мы используем инструменты для поиска семантически похожих текстов в архиве и инструменты для генерации саммари из нескольких документов.

Разработка ведется вместе с профессиональным сообществом, чтобы сделать рабочий процесс для редакций и фрилансеров максимально удобным. Платформа "СоАвтор" имеет модульную структуру. Вы можете придумать новый инструмент, который упрощает работу с текстом, или принять участие в работе над теми, что уже в разработке. Вступайте в наше сообщество на Discord и присылайте свои #идеи того, как можно использовать “СоАвтор” при работе с контентом.

СоАвтор интерфейс


English below


Запустить приложение у себя

Установка

  1. Скачайте файлы проекта или сделайте форк и воспользуйтесь командой git clone
  2. Скачайте файлы с данными: ru_stopwords.txt и news_df.parquet
  3. Скачайте файлы моделей: rubert_tiny и rut5_base_sum
  4. Откройте терминал и перейдите в директорию проекта
  5. Используйте pip install requirements.txt, чтобы установить все нужные библиотеки

Запуск

  1. Поменяйте в файле config.yaml пути к файлам данных и моделям
  2. Откройте терминал и перейдите в директорию проекта
  3. Наберите в терминале команду streamlit run menu.py
  4. Приложение по умолчанию будет доступно по адресу http://localhost:8501 P.S.: приложение можно запустить на своём датасете, если будет соблюдён формат. Пример датасета и описание формата в директории data.

Как участвовать в разработке проекта

Текущие задачи

  1. Обновляемая лента новостей
  2. Модуль для подключения к соцсетям
  3. Анализ трендов по постам из социальных сетей
  4. Классификация evergreen новостей

Помочь решить одну из текущих проблем

  1. Проверьте есть ли открытые проблемы в Issues и выберите одну из них
  2. Если у вас есть своя идея, как законтрибьютить в этот проект, откройте в Issues новый тикет (как это сделать, описано ниже).
  3. Сделайте форк проекта, начните работать над тикетом и внесите свои изменения через pull request.

Добавить проблему (issue)

  1. Если вы нашли баг или недоработку, мы будем признательны, если вы оставите её описание в разделе Issues с тегом bug.
  2. Если у вас есть вопросы по функционалу или вы не понимаете баг это или фича, оставьте нам вопрос в разделе Issues с тегом question.
  3. Если у вас есть идея, какие возможности вы хотели бы ещё видеть в приложении, но не уверены, что можете их самостоятельно реализовать, добавьте описание идеи в раздел Issues с тегом enhancement.

Что ещё я могу делать

  1. Принять участие в обсуждении этого проекта или ваших собственных идей в дискорде нашего сообщества WellnessDataClub.
  2. Взять СоАвтор за основу для разработки собственного open source продукта. СоАвтор сейчас работает с новостями и соцсетями, вы можете начать работать с другим типом данных :)
  3. Примите участие в другом нашем open source проекте OpenMask

Launch this project locally

Installation

  1. Download project files or make fork and use git clone
  2. Download data files: ru_stopwords.txt и news_df.parquet
  3. Download models: rubert_tiny и rut5_base_sum
  4. Using the terminal, change directory to the project's directory
  5. Use pip install requirements.txt

Launch

  1. Change paths to the data and models inside config.yaml
  2. Using the terminal, change directory to the project's directory
  3. Run streamlit run menu.py
  4. The app is available with http://localhost:8501 by default P.S.: this app can be launched with your own data in the right format Dataset example, format description are in the data directory.

How to participate in this project

Current tasks

  1. Updating news feed
  2. One module to collect social network data
  3. Trend analysis based on social network posts
  4. Evergreen news classification

Help to resolve one of current issues

  1. Check if there is an open issue that you'd like to solve
  2. If you have your own idea or see a bug, add a new issue (instructions below)
  3. Make fork from this project, make changes and add them with new pull request.

Add an issue

  1. Add bugs or smth that has to be finished to Issues with bug tag.
  2. If you have questions about functionality or code ask in Issues withquestion tag.
  3. If you have some ideas about new functions, suggest it in Issues with enhancement tag.

What else can I do

  1. Take part in the discussion of this project or your own ideas with our Discord community WellnessDataClub.
  2. Use this project as a base for your own open source product. We now work with news, you csn choose another data type :)
  3. Become a part of our another project OpenMask
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Meta Research 711 Jan 08, 2023
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
Abhijith Neil Abraham 2 Nov 05, 2021
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
CorNet Correlation Networks for Extreme Multi-label Text Classification

CorNet Correlation Networks for Extreme Multi-label Text Classification Prerequisites python==3.6.3 pytorch==1.2.0 torchgpipe==0.0.5 click==7.0 ruamel

Guangxu Xun 38 Dec 31, 2022
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.

FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a

7 Sep 28, 2021
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022