In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is human face recognition, which is also known as HFR. For example- nowadays we can unlock our phone using the face recognition feature. In the existing system, Our lecturers take attendance manually which is somewhat time-consuming and old school type. So, our Artificial Intelligence-based attendance monitoring system will be capturing the faces of every student in a class during attendance and the result will get stored in the database automatically. There will be no extra Radio frequency Identification card, people need to carry anymore and this system will be the most authentic system of taking attendance. The system stores the faces that are detected and automatically uploads the attendance to the database. Using This process our primary goal is to help lecturers as well as students to track and manage student's attendance and absenteeism.
Face Recognition & AI Based Smart Attendance Monitoring System.
Overview
A PyTorch implementation of the continual learning experiments with deep neural networks
Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"
Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation
Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o
Lava-DL, but with PyTorch-Lightning flavour
Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges
A PyTorch implementation of the architecture of Mask RCNN
EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso
Pytorch implementation of Zero-DCE++
Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper
DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta
MPRNet-Cloud-removal: Progressive cloud removal
MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning
Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.
FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah
Experiments on continual learning from a stream of pretrained models.
Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them
TensorFlow-based neural network library
Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn
Learning to Reach Goals via Iterated Supervised Learning
Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"
Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me
This repo tries to recognize faces in the dataset you created
YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma
RefineMask (CVPR 2021)
RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment
PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'
Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap