[email protected] Reverb Database. | PythonRepo" /> [email protected] Reverb Database. | PythonRepo">

The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT [email protected] Reverb Database.

Overview

Add_noise_and_rir_to_speech

The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT [email protected] Reverb Database.

Noise and RIR dataset description:

  • BUT [email protected] Reverb Database:

    The database is being built with respect to collect a large number of various Room Impulse Responses, Room environmental noises (or "silences"), Retransmitted speech (for ASR and SID testing), and meta-data (positions of microphones, speakers etc.).

    The goal is to provide speech community with a dataset for data enhancement and distant microphone or microphone array experiments in ASR and SID.

    In this codebase, we only use the RIR data, which is used to synthesize far-field speech, the composition of the RIR dataset and citation details are as follows.

    Room Name Room Type Size (length, depth, height) (m) (microphone_num x loudspeaker_num)
    Q301 Office 10.7x6.9x2.6 31 x 3
    L207 Office 4.6x6.9x3.1 31 x 6
    L212 Office 7.5x4.6x3.1 31 x 5
    L227 Stairs 6.2x2.6x14.2 31 x 5
    R112 Hotel room 4.4x2.8x2.6 31 x 5
    CR2 Conference room 28.2x11.1x3.3 31 x 4
    E112 Lecture room 11.5x20.1x4.8 31 x 2
    D105 Lecture room 17.2x22.8x6.9 31 x 6
    C236 Meeting room 7.0x4.1x3.6 31 x 10
    @ARTICLE{8717722,
             author={Szöke, Igor and Skácel, Miroslav and Mošner, Ladislav and Paliesek, Jakub and Černocký, Jan},
             journal={IEEE Journal of Selected Topics in Signal Processing}, 
             title={Building and evaluation of a real room impulse response dataset}, 
             year={2019},
             volume={13},
             number={4},
             pages={863-876},
             doi={10.1109/JSTSP.2019.2917582}
     }
    
  • MUSAN database:

    The database consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises and we only use the noise data in this database. Citation details are as follows.

    @misc{snyder2015musan,
          title={MUSAN: A Music, Speech, and Noise Corpus}, 
          author={David Snyder and Guoguo Chen and Daniel Povey},
          year={2015},
          eprint={1510.08484},
          archivePrefix={arXiv},
          primaryClass={cs.SD}
    }
    

Before using the data-processing code:

  • If you do not want the original dataset to be overwritten, please download the dataset again for use

  • You need to create three files: 'training_list.txt', 'validation_list.txt', 'testing_list.txt', based on your training, validation and test data file paths respectively, and ensure the audio in the file paths can be read and written.

  • The content of the aforementioned '*_list.txt' files are in the following form:

    *_list.txt
    	/../...../*.wav
    	/../...../*.wav
    	/../...../*.wav
    

Instruction for using the following data-processing code:

  1. mix_cleanaudio_with_rir_offline.py: Generate far-field speech offline

    • two parameters are needed:

      • --data_root: the data path which you want to download and store the RIR dataset in.
      • --clean_data_list_path: the path of the folder in which 'training_list.txt', 'validation_list.txt', 'testing_list.txt' are stored in
    • 2 folders will be created in data_root: 'ReverDB_data (Removable if needed)', 'ReverDB_mix'

  2. download_and_extract_noise_file.py: Generate musan noise file

    • one parameters are needed:
      • --data_root: the data path which you want to download and store the noise dataset in.
    • 2 folder will be created in data_root: 'musan (Removable if needed)', 'noise'
  3. vad_torch.py: Voice activity detection when adding noise to the speech

    The noise data is usually added online according to the SNR requirements, several pieces of code are provided below, please add them in the appropriate places according to your needs!

    import torchaudio
    import numpy as np
    import torch
    import random
    from vad_torch import VoiceActivityDetector
    
    
    def _add_noise(speech_sig, vad_duration, noise_sig, snr):
        """add noise to the audio.
        :param speech_sig: The input audio signal (Tensor).
        :param vad_duration: The length of the human voice (int).
        :param noise_sig: The input noise signal (Tensor).
        :param snr: the SNR you want to add (int).
        :returns: noisy speech sig with specific snr.
        """
        if vad_duration != 0:
            snr = 10**(snr/10.0)
            speech_power = torch.sum(speech_sig**2)/vad_duration
            noise_power = torch.sum(noise_sig**2)/noise_sig.shape[1]
            noise_update = noise_sig / torch.sqrt(snr * noise_power/speech_power)
    
            if speech_sig.shape[1] > noise_update.shape[1]:
                # padding
                temp_wav = torch.zeros(1, speech_sig.shape[1])
                temp_wav[0, 0:noise_update.shape[1]] = noise_update
                noise_update = temp_wav
            else:
                # cutting
                noise_update = noise_update[0, 0:speech_sig.shape[1]]
    
            return noise_update + speech_sig
        
        else:
            return speech_sig
        
    def main():
        # loading speech file
        speech_file = './speech.wav'
    	waveform, sr = torchaudio.load(speech_file)
    	waveform = waveform - waveform.mean()
    	
        # loading noise file and set snr
    	snr = 0       
    	noise_file = random.randint(1, 930)
    	
        # Voice activity detection
    	v = VoiceActivityDetector(waveform, sr)
    	raw_detection = v.detect_speech()
    	speech_labels = v.convert_windows_to_readible_labels(raw_detection)
    	vad_duration = 0
        if not len(speech_labels) == 0:
            for i in range(len(speech_labels)):
                start = speech_labels[i]['speech_begin']
                end = speech_labels[i]['speech_end']
                vad_duration = vad_duration + end-start
                
    	# adding noise
        noise, _ = torchaudio.load('/notebooks/noise/' + str(noise_file) + '.wav')
        waveform = _add_noise(waveform, vad_duration, noise, snr)
    
    if __name__ == '__main__':
        main()
Owner
Yunqi Chen
3rd-year undergraduate student; Passionate about all kinds of sports and everything interesting!
Yunqi Chen
Write complicated anonymous functions other than lambdas in Python.

lambdex allows you to write multi-line anonymous function expression (called a lambdex) in an idiomatic manner.

Xie Jingyi 71 May 19, 2022
Cairo-math-64x61 - Fixed point 64.61 math library for Cairo / Starknet

Cairo Math 64x61 A fixed point 64.61 math library for Cairo & Starknet Signed 64

Influence 63 Dec 05, 2022
A small C compiler written in Python for learning purposes

A small C compiler written in Python. Generates x64 Intel-format assembly, which is then assembled and linked by nasm and ld.

Scattered Thoughts 3 Oct 22, 2021
You can easily send campaigns, e-marketing have actually account using cash will thank you for using our tools, and you can support our Vodafone Cash +201090788026

*** Welcome User Sorry I Mean Hello Brother ✓ Devolper and Design : Mokhtar Abdelkreem ========================================== You Can Follow Us O

Mo Code 1 Nov 03, 2021
Generates Windows 95 and 95 OEM keys using the modulus 7 check algorithm

w95keygen-python windowskeygen.py - Generates Windows 95 and 95 OEM keys using the modulus 7 check algorithm Just download and drop in the directory y

Joshua Alto 1 Dec 06, 2021
A MCPI hack with many features.

Morpheus 2.0 A MCPI hack with many features To Use: You will need to install the keyboard, pysimplegui, and MCPI python modules and you will need to e

11 Oct 11, 2022
An extended version of the hotkeys demo code using action classes

An extended version of the hotkeys application using action classes. In adafruit's Hotkeys code, a macro is using a series of integers, assumed to be

Neradoc 5 May 01, 2022
because rico hates uuid's

terrible-uuid-lambda because rico hates uuid's sub 200ms response times! Try it out here: https://api.mathisvaneetvelde.com/uuid https://api.mathisvan

Mathis Van Eetvelde 2 Feb 15, 2022
dbt adapter for Firebolt

dbt-firebolt dbt adapter for Firebolt dbt-firebolt supports dbt 0.21 and newer Installation First, download the JDBC driver and place it wherever you'

23 Dec 14, 2022
Простенький ботик для троллинга с интерфейсом #Yakima_Visus

Bot-Trolling-Vk Простенький ботик для троллинга с интерфейсом #Yakima_Visus Установка pip install vk_api pip install requests если там еще чото будет

Yakima Visus 4 Oct 11, 2022
Easily map device and application controls to a midi controller

pymidicontroller Introduction Easily map device and application controls to a midi controller

Tane Barriball 24 May 16, 2022
Automatically re-open threads when they get archived, no matter your boost level!

ThreadPersist Automatically re-open threads when they get archived, no matter your boost level! Installation You will need to install poetry to run th

7 Sep 18, 2022
Automation of VASP DFT workflows with ASE - application scripts

This repo contains a library that aims at automatizing some Density Functional Theory (DFT) workflows in VASP by using the ASE toolkit.

Frank Niessen 5 Sep 06, 2022
A module to prevent invites and joins to Matrix rooms by checking the involved server(s)' domain.

Synapse Domain Rule Checker A module to prevent invites and joins to Matrix rooms by checking the involved server(s)' domain. Installation From the vi

matrix.org 4 Oct 24, 2022
Metal Gear Rising: Revengeance's DAT archive (un)packer

DOOMP Metal Gear Rising: Revengeance's DAT archive (un)packer

Christopher Holzmann Pérez 5 Sep 02, 2022
Kivy program for identification & rotation sensing of objects on multi-touch tables.

ObjectViz ObjectViz is a multitouch object detection solution, enabling you to create physical markers out of any reliable multitouch solution. It's e

TangibleDisplay 8 Apr 04, 2022
Shell Trality API for local development.

Trality Simulator Intro This package is a work in progress. It allows local development of Trality bots in an IDE such as VS Code. The package provide

CrypTrality 1 Nov 17, 2021
NGEBUG is a tool that sends viruses to victims

Ngebug NGEBUG adalah tools pengirim virus ke korban NGEBUG adalah tools virus terbaru yang berasal dari rusia Informasi lengkap ada didalam tools Run

Profesor Acc 3 Dec 13, 2021
Python MapReduce library written in Cython.

Python MapReduce library written in Cython. Visit us in #hadoopy on freenode. See the link below for documentation and tutorials.

Brandyn White 243 Sep 16, 2022
Laurence Billingham 1 Feb 16, 2022