A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

Related tags

Deep LearningRSG
Overview

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021)

A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets". RSG (Rare-class Sample Generator) is a flexible module that can generate rare-class samples during training and can be combined with any backbone network. RSG is only used in the training phase, so it will not bring additional burdens to the backbone network in the testing phase.

How to use RSG in your own networks

  1. Initialize RSG module:

    from RSG import *
    
    # n_center: The number of centers, e.g., 15.
    # feature_maps_shape: The shape of input feature maps (channel, width, height), e.g., [32, 16, 16].
    # num_classes: The number of classes, e.g., 10.
    # contrastive_module_dim: The dimention of the contrastive module, e.g., 256.
    # head_class_lists: The index of head classes, e.g., [0, 1, 2].
    # transfer_strength: Transfer strength, e.g., 1.0.
    # epoch_thresh: The epoch index when rare-class samples are generated: e.g., 159.
    
    self.RSG = RSG(n_center = 15, feature_maps_shape = [32, 16, 16], num_classes=10, contrastive_module_dim = 256, head_class_lists = [0, 1, 2], transfer_strength = 1.0, epoch_thresh = 159)
    
    
  2. Use RSG in the forward pass during training:

    out = self.layer2(out)
    
    # feature_maps: The input feature maps.
    # head_class_lists: The index of head classes.
    # target: The label of samples.
    # epoch: The current index of epoch.
    
    if phase_train == True:
      out, cesc_total, loss_mv_total, combine_target = self.RSG.forward(feature_maps = out, head_class_lists = [0, 1, 2], target = target, epoch = epoch)
     
    out = self.layer3(out) 
    

The two loss terms, namely ''cesc_total'' and ''loss_mv_total'', will be returned and combined with cross-entropy loss for backpropagation. More examples and details can be found in the models in the directory ''Imbalanced_Classification/models''.

How to train

Some examples:

Go into the "Imbalanced_Classification" directory.

  1. To reimplement the result of ResNet-32 on long-tailed CIFAR-10 ($\rho$ = 100) with RSG and LDAM-DRW:

    Export CUDA_VISIBLE_DEVICES=0,1
    python cifar_train.py --imb_type exp --imb_factor 0.01 --loss_type LDAM --train_rule DRW
    
  2. To reimplement the result of ResNet-32 on step CIFAR-10 ($\rho$ = 50) with RSG and Focal loss:

    Export CUDA_VISIBLE_DEVICES=0,1
    python cifar_train.py --imb_type step --imb_factor 0.02 --loss_type Focal --train_rule None
    
  3. To run experiments on iNaturalist 2018, Places-LT, or ImageNet-LT:

    Firstly, please prepare datasets and their corresponding list files. For the convenience, we provide the list files in Google Drive and Baidu Disk.

    Google Drive Baidu Disk
    download download (code: q3dk)

    To train the model:

    python inaturalist_train.py
    

    or

    python places_train.py
    

    or

    python imagenet_lt_train.py
    

    As for Places-LT or ImageNet-LT, the model is trained on the training set, and the best model on the validation set will be saved for testing. The "places_test.py" and 'imagenet_lt_test.py' are used for testing.

Citation

@inproceedings{Jianfeng2021RSG,
  title = {RSG: A Simple but Effective Module for Learning Imbalanced Datasets},
  author = {Jianfeng Wang and Thomas Lukasiewicz and Xiaolin Hu and Jianfei Cai and Zhenghua Xu},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022