A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

Related tags

Deep LearningA-SDF
Overview

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

This repository contains the official implementation for A-SDF introduced in the following paper: A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021). The code is developed based on the Pytorch framework(1.6.0) with python 3.7.6. This repo includes training code and generated data from shape2motion.

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)
JitengMu, Weichao Qiu, Adam Kortylewski, Alan Yuille, Nuno Vasconcelos, Xiaolong Wang
ICCV 2021

The project page with more details is at https://jitengmu.github.io/A-SDF/.

Citation

If you find our code or method helpful, please use the following BibTex entry.

@article{mu2021asdf,
  author    = {Jiteng Mu and
               Weichao Qiu and
               Adam Kortylewski and
               Alan L. Yuille and
               Nuno Vasconcelos and
               Xiaolong Wang},
  title     = {{A-SDF:} Learning Disentangled Signed Distance Functions for Articulated
               Shape Representation},
  journal    = {arXiv preprint arXiv:2104.07645 },
  year      = {2021},
}

Data preparation and layout

Please 1) download dataset and put data in the data directory, and 2) download checkpoints and put the checkpoint in the corresponding example/ directory, e.g. it should look like examples/laptop/laptop-asdf/Model_Parameters/1000.pth.

The dataset is structured as follows, can be, e.g. shape2motion/shape2motion-1-view/shape2motion-2-view/rbo :

data/
    SdfSamples/
        
   
    /
            
    
     /
                
     
      .npz
    SurfaceSamples/
        
      
       /
            
       
        / 
        
         .ply NormalizationParameters/ 
         
          / 
          
           / 
           
            .ply 
           
          
         
        
       
      
     
    
   

Splits of train/test files are stored in a simple JSON format. For examples, see examples/splits/.

How to Use A-SDF

Use the class laptop as illustration. Feel free to change to stapler/washing_machine/door/oven/eyeglasses/refrigerator for exploring other categories.

(a) Train a model

To train a model, run

python train.py -e examples/laptop/laptop-asdf/

(b) Reconstruction

To use a trained model to reconstruct explicit mesh representations of shapes from the test set, run the follow scripts, where -m recon_testset_ttt for inference with test-time adaptation and -m recon_testset otherwise.

python test.py -e examples/laptop/laptop-asdf/ -c 1000 -m recon_testset_ttt

To compute the chamfer distance, run:

python eval.py -e examples/laptop/laptop-asdf/ -c 1000 -m recon_testset_ttt

(c) Generation

To use a trained model to genrate explicit mesh of unseen articulations (specified in asdf/asdf_reconstruct.py) of shapes from the test set, run the follow scripts. Note that -m mode should be consistent with the one for reconstruction: -m generation_ttt for inference with test-time adaptation and -m generation otherwise.

python test.py -e examples/laptop/laptop-asdf/ -c 1000 -m generation_ttt
python eval.py -e examples/laptop/laptop-asdf/ -c 1000 -m generation_ttt

(d) Interpolation

To use a trained model to interpolate explicit mesh of unseen articulations (specified in asdf/asdf_reconstruct.py) of shapes from the test set, run:

python test.py -e examples/laptop/laptop-asdf/ -c 1000 -m inter_testset
python eval.py -e examples/laptop/laptop-asdf/ -c 1000 -m inter_testset

(e) Partial Point Cloud

To use a trained model to reconstruct and generate explicit meshes from partial pointcloud: (1) download the partial point clouds dataset laptop-1/2-view-0.025.zip from dataset first and (2) put the laptop checkpoint trained on shape2motion in examples/laptop/laptop-asdf-1/2-view/, (3) then run the following scripts, where --dataset shape2motion-1-view for partial point clouds generated from a single depth image and --dataset shape2motion-2-view for the case generated from two depth images of different view points, -m can be one of recon_testset/recon_testset_ttt/generation/generation_ttt, similar to previous experiments.

python test.py -e examples/laptop/laptop-asdf-1-view/ -c 1000 -m recon_testset_ttt/generation_ttt --dataset shape2motion-1-view
python eval.py -e examples/laptop/laptop-asdf-1-view/ -c 1000 -m recon_testset_ttt/generation_ttt

(f) RBO dataset

To test a model on the rbo dataset: (1) download the generated partial point clouds of the laptop class from the rbo dataset --- rbo_laptop_release_test.zip from dataset first, (2) put the laptop checkpoint trained on shape2motion in examples/laptop/laptop-asdf-rbo/, (3) then run the following,

python test.py -e examples/laptop/laptop-asdf-rbo/ -m recon_testset_ttt/generation_ttt -c 1000 --dataset rbo
python eval_rbo.py -e examples/laptop/laptop-asdf-rbo/ -m recon_testset_ttt/generation_ttt -c 1000

Dataset generation details are included in the 'dataset_generation/rbo'.

Data Generation

Stay tuned. We follow (1) ANSCH to create URDF for shape2motion dataset,(2) Manifold to create watertight meshes, (3) and modified mesh_to_sdf for generating sampled points and sdf values.

Acknowledgement

The code is heavily based on Jeong Joon Park's DeepSDF from facebook.

Owner
Ph.D. student
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
A Simple Example for Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env

Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env This repository implements a simple algorithm for imitation learning: DAGGER. In thi

Hao 66 Nov 23, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023