CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

Overview

CapsuleVOS

This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing.

Arxiv Link: https://arxiv.org/abs/1910.00132

The network is implemented using TensorFlow 1.4.1.

Python packages used: numpy, scipy, scikit-video

Files and their use

  1. caps_layers_cod.py: Contains the functions required to construct capsule layers - (primary, convolutional, and fully-connected, and conditional capsule routing).
  2. caps_network_train.py: Contains the CapsuleVOS model for training.
  3. caps_network_test.py: Contains the CapsuleVOS model for testing.
  4. caps_main.py: Contains the main function, which is called to train the network.
  5. config.py: Contains several different hyperparameters used for the network, training, or inference.
  6. inference.py: Contains the inference code.
  7. load_youtube_data_multi.py: Contains the training data-generator for YoutubeVOS 2018 dataset.
  8. load_youtubevalid_data.py: Contains the validation data-generator for YoutubeVOS 2018 dataset.

Data Used

We have supplied the code for training and inference of the model on the YoutubeVOS-2018 dataset. The file load_youtube_data_multi.py and load_youtubevalid_data.py creates two DataLoaders - one for training and one for validation. The data_loc variable at the top of each file should be set to the base directory which contains the frames and annotations.

To run this code, you need to do the following:

  1. Download the YoutubeVOS dataset
  2. Perform interpolation for the training frames following the papers' instructions

Training the Model

Once the data is set up you can train (and test) the network by calling python3 caps_main.py.

The config.py file contains several hyper-parameters which are useful for training the network.

Output File

During training and testing, metrics are printed to stdout as well as an output*.txt file. During training/validation, the losses and accuracies are printed out to the terminal and to an output file.

Saved Weights

Pretrained weights for the network are available here. To use them for inference, place them in the network_saves_best folder.

Inference

If you just want to test the trained model with the weights above, run the inference code by calling python3 inference.py. This code will read in an .mp4 file and a reference segmentation mask, and output the segmented frames of the video to the Output folder.

An example video is available in the Example folder.

Owner
PhD student at the Center for Research in Computer Vision
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022