Official page of Patchwork (RA-L'21 w/ IROS'21)

Overview

Patchwork

Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor", which is accepted by RA-L with IROS'21 option

[Video] [Preprint Paper] [Project Wiki]

Patchwork Concept of our method (CZM & GLE)

It's an overall updated version of R-GPF of ERASOR [Code] [Paper].


Demo

KITTI 00

Rough Terrain


Characteristics

  • Single hpp file (include/patchwork/patchwork.hpp)

  • Robust ground consistency

As shown in the demo videos and below figure, our method shows the most promising robust performance compared with other state-of-the-art methods, especially, our method focuses on the little perturbation of precision/recall as shown in this figure.

Please kindly note that the concept of traversable area and ground is quite different! Please refer to our paper.

Contents

  1. Test Env.
  2. Requirements
  3. How to Run Patchwork
  4. Citation

Test Env.

The code is tested successfully at

  • Linux 18.04 LTS
  • ROS Melodic

Requirements

ROS Setting

    1. Install ROS on a machine.
    1. Thereafter, jsk-visualization is required to visualize Ground Likelihood Estimation status.
sudo apt-get install ros-melodic-jsk-recognition
sudo apt-get install ros-melodic-jsk-common-msgs
sudo apt-get install ros-melodic-jsk-rviz-plugins
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
git clone https://github.com/LimHyungTae/patchwork.git
cd .. && catkin build patchwork 

How to Run Patchwork

We provide three examples

  • Offline KITTI dataset
  • Online (ROS Callback) KITTI dataset
  • Own dataset using pcd files

Offline KITTI dataset

  1. Download SemanticKITTI Odometry dataset (We also need labels since we also open the evaluation code! :)

  2. Set the data_path in launch/offline_kitti.launch for your machine.

The data_path consists of velodyne folder and labels folder as follows:

data_path (e.g. 00, 01, ..., or 10)
_____velodyne
     |___000000.bin
     |___000001.bin
     |___000002.bin
     |...
_____labels
     |___000000.label
     |___000001.label
     |___000002.label
     |...
_____...
   
  1. Run launch file
roslaunch patchwork offline_kitti.launch

You can directly feel the speed of Patchwork! 😉

Online (ROS Callback) KITTI dataset

We also provide rosbag example. If you run our patchwork via rosbag, please refer to this example.

  1. Download readymade rosbag
wget https://urserver.kaist.ac.kr/publicdata/patchwork/kitti_00_xyzilid.bag
  1. After building this package, run the roslaunch as follows:
roslaunch patchwork rosbag_kitti.launch
  1. Then play the rosbag file in another command
rosbag play kitti_00_xyzilid.bag

Own dataset using pcd files

Please refer to /nodes/offilne_own_data.cpp.

(Note that in your own data format, there may not exist ground truth labels!)

Be sure to set right params. Otherwise, your results may be wrong as follows:

W/ wrong params After setting right params

For better understanding of the parameters of Patchwork, please read our wiki, 4. IMPORTANT: Setting Parameters of Patchwork in Your Own Env..

Offline (Using *.pcd or *.bin file)

  1. Utilize /nodes/offilne_own_data.cpp

  2. Please check the output by following command and corresponding files:

roslaunch patchwork offline_ouster128.launch

Online (via rosbag)

  1. Utilize rosbag_kitti.launch.

  2. To do so, remap the topic of subscriber, e.g. add remap line as follows:

<remap from="/node" to="$YOUR_LIDAR_TOPIC_NAME$"/>
  1. In addition, minor modification of ros_kitti.cpp is necessary by refering to offline_own_data.cpp.

Citation

If you use our code or method in your work, please consider citing the following:

@article{lim2021patchwork,
title={Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor},
author={Lim, Hyungtae and Minho, Oh and Myung, Hyun},
journal={IEEE Robotics and Automation Letters},
year={2021}
}

Description

All explanations of parameters and other experimental results will be uploaded in wiki

Contact

If you have any questions, please let me know:

TODO List

  • Add ROS support
  • Add preprint paper
  • Add demo videos
  • Add own dataset examples
  • Update wiki

Owner
Hyungtae Lim
Ph.D Candidate of URL lab. @ KAIST, South Korea
Hyungtae Lim
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022