Tracing and Observability with OpenFaaS

Overview

Tracing and Observability with OpenFaaS

Today we will walk through how to add OpenTracing or OpenTelemetry with Grafana's Tempo.

For this walk-through we will need several CLI toosl:

  • kind
  • helm
  • kubectl
  • faas-cli

The simplest way to get going is to use arkade to install each of these

arkade get kubectl
arkade get kind
arkade get helm
arkade get faas-cli

Create a cluster

We will use KinD to create our Kubernetes cluster, but, before we start our test cluster, we want to customize our cluster to make it a little easier to work with by exposing port 80 to our localhost. We will use 80 for the ingress to our functions, create the following file as cluster.yaml

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
  - role: control-plane
    kubeadmConfigPatches:
      - |
        kind: InitConfiguration
        nodeRegistration:
          kubeletExtraArgs:
            node-labels: "ingress-ready=true"
    extraPortMappings:
      - containerPort: 30080
        hostPort: 80
        protocol: TCP
      - containerPort: 443
        hostPort: 443
        protocol: TCP
      - containerPort: 31112 # this is the NodePort created by the helm chart
        hostPort: 8080 # this is your port on localhost
        protocol: TCP

Now start the cluster using

kind create cluster --name of-tracing --config=cluster.yaml

Install the required apps

Now we can install the usual components we need

Tempo and Grafana

First we start with Tempo and Grafana so that the tracing collector service is available for the other services we will install:

helm repo add grafana https://grafana.github.io/helm-charts
helm repo update

Now create the following values file

# grafana-values.yaml
env:
  GF_AUTH_ANONYMOUS_ENABLED: true
  GF_AUTH_ANONYMOUS_ORG_ROLE: "Admin"
  GF_AUTH_DISABLE_LOGIN_FORM: true

grafana.ini:
  server:
    domain: monitoring.openfaas.local
    root_url: "%(protocol)s://%(domain)s/grafana"
    serve_from_sub_path: true

datasources:
  datasources.yaml:
    apiVersion: 1

    datasources:
      - name: Tempo
        type: tempo
        access: proxy
        orgId: 1
        url: http://tempo:3100
        isDefault: false
        version: 1
        editable: false
        uid: tempo
      - name: Loki
        type: loki
        access: proxy
        url: http://loki:3100
        isDefault: true
        version: 1
        editable: false
        uid: loki
        jsonData:
          derivedFields:
            - datasourceUid: tempo
              matcherRegex: (?:traceID|trace_id|traceId|traceid=(\w+))
              url: "$${__value.raw}"
              name: TraceID

This will do several things for us:

  1. configure the Grafana UI to handle the sub-path prefix /grafana
  2. configure the Tempo data source, this is where our traces will be queried from
  3. configure the Loki data source, this is where our logs come from
  4. finally, as part of the Loki configuration, we setup the derived field TraceID, which allows Loki to parse the trace id from the logs turn it into a link to Tempo.

Now, we can install Tempo and then Grafana

helm upgrade --install tempo grafana/tempo
helm upgrade -f grafana-values.yaml --install grafana grafana/grafana

NOTE the Grafana Helm chart does expose Ingress options that we could use, but they currently do not generate a valid Ingress spec to use with the latest nginx-ingress, specifically, it is missing an incressClhelm upgrade -f grafana-values.yaml --install grafana grafana/grafana. We will handle this later, below.

Nginx

First we want to enable Nginx to generate incoming tracing spans. We are going to enable this globally in our Nginx installation by using the config option

arkade install ingress-nginx \
    --set controller.config.enable-opentracing='true' \
    --set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
    --set controller.hostPort.enabled='true' \
    --set controller.service.type=NodePort \
    --set controller.service.nodePorts.http=30080 \
    --set controller.publishService.enabled='false' \
    --set controller.extraArgs.publish-status-address=localhost \
    --set controller.updateStrategy.rollingUpdate.maxSurge=0 \
    --set controller.updateStrategy.rollingUpdate.maxUnavailable=1 \
    --set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

Most of these options are specific the fact that we are installing in KinD. The settings that are important to our tracing are these three

--set controller.config.enable-opentracing='true' \
--set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
--set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

The first two options enable tracing and send the traces to our Tempo collector. The last option configures the nginx logs to include the trace ID in the logs. In general, I would recommend putting the logs into logfmt structure, in short, usingkey=value. This is automatically parsed into fields by Loki and it is much easier to read in it's raw form. Unfortunately, at this time, arkade will not parse --set values with an equal sign. Using

--set controller.config.log-format-upstream='remote_addr=$remote_addr user=$remote_user ts=$time_local request="$request" status=$status body_bytes=$body_bytes_sent referer="$http_referer" user_agent="$http_user_agent" request_length=$request_length duration=$request_time upstream=$proxy_upstream_name upstream_addr=$upstream_addr upstream_resp_length=$upstream_response_length upstream_duration=$upstream_response_time upstream_status=$upstream_status traceId=$opentracing_context_uber_trace_id'

will produce the error Error: incorrect format for custom flag

Let's expose our Grafana installation! Create this file as grafana-ing.yaml

# grafana-ing.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: grafana
  namespace: default
spec:
  ingressClassName: nginx
  rules:
    - host: monitoring.openfaas.local
      http:
        paths:
          - backend:
              service:
                name: grafana
                port:
                  number: 80
            path: /grafana
            pathType: Prefix

and apply it to the cluster

kubectl apply -f grafana-ing.yaml

Verifying the ingress and grafana

Now, let's verify that things are working,

  1. edit your /etc/hosts file to include

    127.0.0.1 gateway.openfaas.local
    127.0.0.1 monitoring.openfaas.local
    
  2. Now open http://monitoring.openfaas.local

  3. You can explore the logs from nginx, using the Loki query

    {app_kubernetes_io_name="ingress-nginx"}
    

    use this link to open the query in your Grafana.

OpenFaaS

Now that we are prepared to monitor our applications, let's install OpenFaaS and and some functions

arkade install openfaas -a=false --function-pull-policy=IfNotPresent --set ingress.enabled='true'
arkade install openfaas-loki

Because we exposed port 8080 when we setup the Cluster and disabled auth when we installed OpenFaaS, we can start using faas-cli right away

$ faas-cli store deploy nodeinfo

Deployed. 202 Accepted.
URL: http://127.0.0.1:8080/function/nodeinfo

But, we can also use the OpenFaaS UI at http://gateway.openfaas.local

Let's generate some data by invoking the function

echo "" | faas-cli invoke nodeinfo

In the Grafana UI, you can see the logs using the query {faas_function="nodeinfo"}, use this link.

Creating traces from your function

Unfortunately, the OpenFaaS gateway does not produces traces like nginx, so right now we only get a very high level overview from our traces. Nginx will show us the timing as well as the request URL and response status code.

Fortunately, all of the request headers are correctly forwarded to our functions, most importantly this includes the tracing headers generated by Nginx. This means we provide more details

This example will use the Python 3 Flask template and OpenTelemetry.

Setup

  1. Pull the function template using

    faas-cli template store pull python3-flask
  2. Initialize the app is-it-down

    faas-cli new is-it-down --lang python3-flask
    mv is-it-down.yml stack.yml
  3. Now, set up our python dependencies, add this to the requirements.txt

    opentelemetry-api==1.7.1
    opentelemetry-exporter-otlp==1.7.1
    opentelemetry-instrumentation-flask==0.26b1
    opentelemetry-instrumentation-requests==0.26b1
    opentelemetry-sdk==1.7.1
    requests==2.26.0
    
  4. Now the implementation

Owner
Lucas Roesler
I am a senior engineer at Contiamo and an ex-mathematician. I have worked on web apps, image analysis, machine learning problems, and pure math research
Lucas Roesler
Herramienta para poder automatizar reuniones en Zoom.

Crear Reunión Zoom con Python Herramienta para poder automatizar reuniones en Zoom. Librerías Requeridas Nombre Comando PyAutoGui pip install pyautogu

JkDev 3 Nov 12, 2022
A small scale relica of bank management system using the MySQL queries in the python language.

Bank_Management_system This is a Bank Management System Database Project. Abstract: The main aim of the Bank Management Mini project is to keep record

Arun Singh Babal 1 Jan 27, 2022
All solutions for the 2021 Advent of Code event.

Advent of Code 2021 Solutions All solutions for the 2021 Advent of Code event. Setup Create a file called .session. Go to adventofcode.com and copy th

Bruce Berrios 6 Dec 26, 2021
Konomi: Kind and Optimized Next brOadcast watching systeM Infrastructure

Konomi 備考・注意事項 現在 α 版で、まだ実験的なプロダクトです。通常利用には耐えないでしょうし、サポートもできません。 安定しているとは到底言いがたい品質ですが、それでも構わない方のみ導入してください。 使い方などの説明も用意できていないため、自力でトラブルに対処できるエンジニアの方以外に

tsukumi 243 Dec 30, 2022
Placeholders is a single-unit storage solution for your Frontend.

Placeholder Placeholders is a single-unit file storage solution for your Frontend. Why Placeholder? Generally, when a website/service requests for fil

Tanmoy Sen Gupta 1 Nov 09, 2021
Battery conservation Python script for ubuntu to enable battery conservation mode at 60% 80% or 90%

Description Batteryconservation is a small python script wich creates an appindicator for ubuntu which can be used to enable / disable battery conserv

3 Jan 04, 2022
In this repo i inherit the pos module and added QR code to pos receipt

odoo-pos-inherit In this repo i inherit the pos module and added QR code to pos receipt 1- Create new Odoo Module using command line $ python odoo-bin

5 Apr 09, 2022
Adversarial Robustness with Non-uniform Perturbations

Adversarial Robustness with Non-uniform Perturbations This repository hosts the code to replicate experiments of the paper Adversarial Robustness with

5 May 20, 2022
Holographic Declarative Memory for Python ACT-R

HDM This is the repository for the Holographic Declarative Memory (HDM) module for Python ACT-R. This repository contains: documentation: a paper, con

Carleton Cognitive Modeling Lab 1 Jan 17, 2022
Generates Windows 95 and 95 OEM keys using the modulus 7 check algorithm

w95keygen-python windowskeygen.py - Generates Windows 95 and 95 OEM keys using the modulus 7 check algorithm Just download and drop in the directory y

Joshua Alto 1 Dec 06, 2021
Open source book about making Python packages.

Python packages Tomas Beuzen & Tiffany Timbers Python packages are a core element of the Python programming language and are how you create organized,

Python Packages 169 Jan 06, 2023
This is a a CSMA/CA simulator written in Python based on simulator of the same type

This is a a CSMA/CA simulator written in Python based on simulator of the same type found the link https://github.com/StevenSLXie/CSMA-Simulator with

M. Ismail 4 Nov 22, 2022
A collection of UIKit components that can be used as a Wagtail StreamField block.

Wagtail UIKit Blocks A collection of UIKit components that can be used as a Wagtail StreamField block. Available UIKit components Container Grid Headi

Krishna Prasad K 13 Dec 15, 2022
Ronin - Create Fud Meterpreter Payload To Hack Windows 11

Ronin - Create Fud Meterpreter Payload To Hack Windows 11

Dj4w3d H4mm4di 6 May 09, 2022
A wide AOI generator tool.

Dark Generator A wide AOI generator tool. Information Installation To Install you have to have python 3.x and pip installed on your system. If you hav

Darkest Surface 12 Dec 26, 2022
flake8 plugin which checks that there is no use of sleep in the code.

flake8-sleep flake8 plugin which checks for use of sleep function. installation Using Pypi: pip install flake8-sleep flake8 codes Code Description SLP

1 Nov 26, 2021
Runtime profiler for Streamlit, powered by pyinstrument

streamlit-profiler 🏄🏼 Runtime profiler for Streamlit, powered by pyinstrument. streamlit-profiler is a Streamlit component that helps you find out w

Johannes Rieke 23 Nov 30, 2022
pyRTOS is a real-time operating system (RTOS), written in Python.

pyRTOS Introduction pyRTOS is a real-time operating system (RTOS), written in Python. The primary goal of pyRTOS is to provide a pure Python RTOS that

Ben Williams 96 Dec 30, 2022
Extract continuous and discrete relaxation spectra from G(t)

pyReSpect-time Extract continuous and discrete relaxation spectra from stress relaxation modulus G(t). The papers which describe the method and test c

3 Nov 03, 2022
Meilleur outil de hacking Zapp en 2021 pour Termux

WhatsApp-Tool Meilleur outil de hacking Zapp en 2021 pour Termux Cet outil est le seul prennant en compte les dernières mises à jour de WhatsApp. FONC

2 Aug 17, 2022