Simulación con el método de Montecarlo para verificar ganancias con márgenes negativos.

Overview

Apliación del método Monte Carlo a un ejemplo que incluye márgenes negativos.

Por Marco A. de la Cruz

Importante

La información contenida en este ejemplo, así como el planteamiento son ficticios. Este trabajo tiene como finalidad ejemplificar el uso del método Monte Carlo y cómo este puede ser replicado para algùn uso concreto.

Lo contenido en este trabajo es de acceso libre, sin embargo, pido de la ayuda del lector para dar crédito al autor original si este es usado para otros trabajos o estudios.

Planteamiento del problema

Una empresa dedicada a la venta de joyería ha optado por una estrategia agresiva, para atraer mayor mercado algunos de los precios de ciertos modelos estarán por debajo de los costos de adquisición. El equipo de mercadeo estima un aumento de sus clientes y creen que las ventas tendrán un comportamiento de una distribución normal con un promedio de 1000 y una desviación estándar de 100 ($N(\mu = 1000, \sigma = 100)$).

Por otro lado se debe considerar que esta empresa tiene una alianza comercial con una tarjeta de descuentos, el equipo de mercadeo ha indicado que consideran que hay una probabilidad del 20% de un cliente se presente con una tarjeta de descuentos plata, la cual permitiría un descuento del 5% en cualquier producto y que hay una probabilidad del 10% de que un cliente se presente con una tarjeta de descuentos oro, que permitirá adquirir un producto con 10% de descuento.

Tarjeta de descuentos % que un cliente use la tarjeta Descuento en el precio final
TDD plata 20% (-)5%
TDD oro 10% (-)10%

Por último se compartió el porcentaje de ventas de cada modelo, y se estima que esa razón se mantendrá en los meses siguientes, por lo que se puede considerar como la probabilidad de que cada modelo sea vendida.

Toda esta información está contenida en el archivo Prices.xlsx, la primera columna el artículo, la segunda columna el precio de venta, la tercera columna el costo unitario, y la última la probabilidad de que ese modelo sea vendido.

Artículo Precio Costo Probabilidad
Item #1 $ 4 600.00 $ 4 830.00 2.79%
Item #2 $ 4 100.00 $ 4 080.00 4.70%
Item #3 $ 2 500.00 $ 1 575.00 8.26%
Item #4 $ 4 400.00 $ 4 004.00 5.78%
Item #5 $ 5 000.00 $ 3 600.00 9.71%
Item #6 $ 5 000.00 $ 5 350.00 6.60%
Item #7 $ 2 700.00 $ 1 998.00 7.13%
Item #8 $ 2 200.00 $ 2 068.00 0.39%
Item #9 $ 2 600.00 $ 2 288.00 5.94%
Item #10 $ 2 800.00 $ 3 080.00 2.48%
Item #11 $ 2 500.00 $ 2 800.00 2.32%
Item #12 $ 2 300.00 $ 2 553.00 6.98%
Item #13 $ 4 000.00 $ 3 800.00 8.48%
Item #14 $ 4 800.00 $ 2 928.00 0.69%
Item #15 $ 3 900.00 $ 3 550.00 1.98%
Item #16 $ 2 700.00 $ 2 322.00 3.18%
Item #17 $ 4 400.00 $ 3 784.00 6.36%
Item #18 $ 3 300.00 $ 3 105.00 8.46%
Item #19 $ 4 700.00 $ 3 478.00 3.69%
Item #20 $ 4 800.00 $ 3 840.00 4.08%

Para este ejemplo no se considerán otros costos (por ejemplo, costos fijos) más allá que los costos unitarios, además no se considerarán los impuestos. Esto con la finalidad de simplificar este ejercicio y dar a entender el funcionamiento del método Monte Carlo.

Para dar un poco más de profesionalidad al trabajo he optado por mostrar toda esta información en un archivo Latex, ya que como ejemplo esto puede ser empleado en un fomrsto estándar (como el que se usa para tesis y trabajos similares).

Explicación de cómo funciona el método Monte Carlo

Este es un método no determinista y se utiliza para que a través de valores probabilísticos se simule el comportamiento impredecible de la realidad con la generación de números semialeatorios.

Si bien es cierto que un mayor número de simulaciones deberían ser más parecidos a los cálculos obtenidos por métodos deterministas, es precisamente con este comportamiento con el que se pueden obtener datos extra como la variabilidad y obtener rangos de comportamiento.

Para este ejercicio específico, se utilizarán tres simulaciones en paralelo en doscientas pruebas diferentes. El primero indicará cuantas piezas se recibirán, como se mencionó anteriormente se utilizará una función beta, este primer número indicará cuantas veces se ejecutará la segunda simulación. La segunda simulación determinará qué dispositivo se ha recibido considerando un número semialeatorio continuo entre 0 y 1, y respecto a la función acumulada de los diferentes modelos indicará a qué modelo y gradación corresponde.

La tercera simulación determina a quién se venderá el equipo, la opción que mejor pague por el dispositivo tendrá una probabilidad del 60%, la segunda mejor opción tendrá una probabilidad del 30% y la tercera opción un 10%.

Se hará una operación aritmética del precio de venta de cada equipo menos el precio de adquisición y se registrará el total en una tabla.

Finalmente se tomarán todos los resultados de la tabla y podremos determinar los números estadísticos descriptivos y conocer el alcance del programa bajo dichas cantidades.

Para poder replicar el análisis en cualquier computadora con el mismo software, se utilizarán semillas en los métodos y funciones que requieran números aleatorios.


Due to the behavior of received Devices from the trade in program, it is believed that we will receive five hundred devices per month, however, in order for the simulation to consider scenarios where sales are slightly lower than planned, it is proposed two hundred simulations where a random number of pieces of the beta function $X \sim Beta(\alpha= 4, \beta = 5)$ with location 400 and scale of 200 (image 1). This distribution has the characteristic of having a mean ($\overline{X}$) of 488.03, a median ($\widetilde{X}$) of 488.89 and a standard variation ($\sigma$) of 31.43.

Image 1. Beta Function for received devices.Image 1

Analytics has determined that the equipment reception will have a distribution as indicated in table 1. For simulation issues, each received equipment will generate a semi-random number between 0 and 1 to simulate the grade of the device received, only in the event that a unit does not have a price available for grade 3, the price of grade 2 will be taken.

Table 1. Probability of receiving different grade devices.

Grading Probability of being received
Grade 1 80.00%
Grade 2 15.24%
Grade 3 4.76%

Due to the above, a file containing the probabilities of each device of being acquired by the trade-in program has been restructured, separated into three main columns: Model, grading and probability. The probability has been calculated as follows. $$ p_{model - grade}=p_{model}\cdot p_{grading} $$ An example of the above is the Galaxy Note 10 model, which in the model mix has a probability of receiving it of 0.6%, this amount would be multiplied by each of the probabilities of each grade of being received (table 1). $$ p_{Note10-Grade1}=0.6% \cdot 80.00% = 0.4800%\ p_{Note10-Grade2}=0.6% \cdot 15.24% = 0.0914%\ p_{Note10-Grade3}=0.6% \cdot 4.76% = 0.0286% $$ With the above we can affirm the following, where:

  • $p_{i \alpha}$ is the probability of each model of grade 1 to being traded.

  • $p_{i \beta}$ is the probability of each model of grade 2 to being traded.

  • $p_{i\gamma}$ Is the probability of each model of grade 3 to being traded.

  • $n$ is the quantity of models on the list.

$$ \sum_{i=1}^{n} ( p_{i \alpha} + p_{i \beta} + p_{i \gamma} ) = 1.00 $$

Since three files have been manipulated, these will be in the annexes, only details of what is contained in each column will be given.

Probabilities.xlsx (table 2) indicates the probability that a device will be acquired in the trade-in program by model and grading.

Table 2. Description in Probabilities.xlsx.

Column name Description
Device name Model name.
Model Mix Probability of receiving this model in the trade-in program.
Grade Model grade.
Probability Probability of receiving this model with the corresponding grading in the trade-in program.

Buying price.xlsx (table 3) indicates the purchase prices by model and grading.

Table 3. Description in Buying price.xlsx.

Column name Description
Device name Model name.
Grading Model grade.
Buying price Acquisition price of the model and corresponding grading.

Aggregators prices.xlsx (table 4) indicates the prices at which the equipment will be sold, in this specific case it will be considered that 60% of the collected equipment will be sold to the best option, 30% to the second highest bidder and 10 % to the highest bidder.

Table 4. Aggregators prices.xlsx.

Column name Description
Device name Model name.
Grade Model grade.
Selling price 1 Maximum sale price to aggregators for the model and grading indicated.
Selling price 2 Second highest selling price to aggregators for the model and grading indicated.
Selling price 3 Third highest selling price to aggregators for the designated model and grading.

Explanation how Monte Carlo method works

This is a non-deterministic method and it is used so that through probabilistic values the unpredictable behavior of reality is simulated with the generation of semi-random numbers.

Although it is true that a greater number of simulations should be more similar to the calculations obtained by deterministic methods, it is precisely with this behavior that extra data such as variability can be obtained and behavior ranges obtained.

For this specific exercise, three simulations will be used in parallel in two hundred different tests. The first will indicate how many pieces will be received, as previously mentioned a beta function will be used, this first number will indicate how many times the second simulation will be executed. The second simulation will determine which device has been received considering a continuous semi-random number between 0 and 1, and with respect to the accumulated function of the different models it will indicate which model and grading it corresponds to.

The third simulation determines to whom the equipment will be sold, the option that pays the best for the device will have a probability of 60%, the second best option will have a probability of 30% and the third option a 10%.

An arithmetic operation will be made of the sale price of each equipment minus the acquisition price and the total will be recorded in a table.

Finally, all the results of the table will be taken and we will be able to determine the descriptive statistics numbers and know the scope of the program under said quantities.

In order to be able to replicate the analysis on any computer with the same software, seeds will be used in the methods and functions that require random numbers.

Analysis using Python 3.X

Step 1

Annexes

Annex 1 Creation of image 1 using python 3.X.

import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
from matplotlib import ticker

x1 = np.arange(400, 601)
y1 = st.beta(4, 5, loc=400, scale=200).pdf(x1)

fig, ax = plt.subplots(figsize=(6,4))
plt.style.use('bmh')
ax.bar(x, y*100, color='grey', width=3)
ax.set_xlabel('Devices that can be received')
ax.set_ylabel('Probability of receiving those devices')
ax.yaxis.set_major_formatter(ticker.PercentFormatter())

![image-20211209231942028](../../../../../Library/Application Support/typora-user-images/image-20211209231942028.png)

A Powerful, Smart And Simple Userbot In Pyrogram.

Eagle-USERBOT 🇮🇳 A Powerful, Smart And Simple Userbot In Pyrogram. Support 🚑 Inspiration & Credits Userge-X Userge Pokurt Pyrogram Code Owners Mast

Masterolic 1 Nov 28, 2021
Adds a new git subcommand named "ranch".

Git Ranch This script adds ranch, a new subcommand for git that makes it easier to order 1 Gallon of Kraft Ranch Salad Dressing from Amazon. Installat

Austin T Schaffer 8 Jul 06, 2022
An anime themed telegram group management bot based on sqlalchemy database running on python3.

Kazuko Robot A Telegram Python bot running on python3 forked with saitama and DiasyX with a sqlalchemy database and an entirely themed persona to make

heyaaman 22 Dec 07, 2022
Whatsapp-APi Wrapper From rzawapi.my.id

Whatsapp-APi Wrapper From rzawapi.my.id

Rezza Priatna 2 Apr 19, 2022
Signs the target email up to over 1000 different mailing lists to get spammed each day.

Email Bomber Say goodbye to that email Features Signs up to over 1k different mailing lists Written in python so the program is lightweight Easy to us

Loxdr 1 Nov 30, 2021
Projeto do segundo módulo da Resilia

@ Projeto Resilia : Módulo 2 Vamos jogar Forca ! O jogo da forca é um jogo em que o jogador tem que acertar qual é a palavra proposta, tendo como dica

Mateus Sartorio 2 Feb 24, 2022
Discord bot for user notes.

Noter A discord bot for handling notes for users. Want to keep track of things about your discord users? Then this bot is for you! Links DB Browser fo

Ori 2 Jun 05, 2022
A script to automatically update bot status at GitHub as well as in Telegram channel.

Support BotStatus ~ A simple & short repository to show your bot's status in your GitHub README.md file as well as in you channel. ⚠️ This repo should

Jainam Oswal 55 Dec 13, 2022
Unofficial Medium Python Flask API and SDK

PyMedium - Unofficial Medium API PyMedium is an unofficial Medium API written in python flask. It provides developers to access to user, post list and

Engine Bai 157 Nov 11, 2022
The AWS Lambda Serverless Blind XSS App

Ass The AWS Lambda Serverless Blind XSS App 利用VPS配置XSS平台太麻烦了,如果利用AWS的Lambda那不就是一个域名的事情么?剩下的环境配置、HTTPS证书、隐私性、VPS续费都不用管了, 所以根据xless重写了Lambda平台的XSS,利用sla

cocokey 2 Dec 27, 2021
The most Advanced yet simple Multi Cloud tool to transfer Your Data from any cloud to any cloud remotely based on Rclone.⚡

Multi Cloud Transfer (Advanced!) 🔥 1.Setup and Start using Rclone on Google Colab and Create/Edit/View and delete your Rclone config file and keep th

Dr.Caduceus 162 Jan 08, 2023
A Python SDK for Tinybird 🐦

Verdin Verdin is a tiny bird, and also a Python SDK for Tinybird . Install pip install verdin Usage Query a Pipe # the tinybird module exposes all im

LocalStack 13 Dec 14, 2022
A script to automate the process of downloading Markdown and CSV backups of Notion

Automatic-Notion-Backup A script to automate the process of downloading Markdown and CSV backups of Notion. In addition, the data is processed to remo

Jorge Manuel Lozano Gómez 2 Nov 02, 2022
A script that writes automatic instagram comments under a post

Send automatic messages under a post on instagram Instagram will rate limit you after some time. From there on you can only post 1 comment every 40 se

Maximilian Freitag 3 Apr 28, 2022
📈 A Discord bot for displaying the download stats of a repository made with Python, the Hikari API and PostgreSQL.

📈 axyl-stats axyl-stats is a Discord bot made with Python (with the Hikari API wrapper) and PostgreSQL, used as a download counter for a GitHub repo.

Angelo-F 2 May 14, 2022
An all-purpose Discord bot written in Python featuring a diverse collection of practical utilities.

GlazeGlopBot Table of Contents About Setup Usage Commands Command Errors Cog Management Local Sound Files Cogs Mod QR RNG VC Weather Proposed Features

Edison Ye 0 May 12, 2022
Discord Bot for League of Legends live match tracker

SABot Dicord Bot for League of Legends match auto tracker Features: Search Summoners statistics in League of Legends. Auto-notifications provide when

Jungyu Choi 4 Sep 27, 2022
Discord py bot that plays magic the gathering.

Klunker Discord py bot that can play magic the gathering Bug Hunter Hello Bug Hunters. To help out with production of this bot, we need help catching

Aiden Castillo 0 Apr 25, 2022
Facebook open graph api implementation using the Django web framework in python

Django Facebook by Thierry Schellenbach (mellowmorning.com) Status Django and Facebook are both rapidly changing at the moment. Meanwhile, I'm caught

Thierry Schellenbach 1.4k Dec 29, 2022
RChecker - Checker for minecraft servers

🔎 RChecker v1.0 Checker for Minecraft Servers 💻 Supported operating systems: ✅

Pedro Vega 1 Aug 30, 2022