RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

Related tags

Deep LearningRuleBert
Overview

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

(Paper) (Slides) (Video)

RuleBERT reasons over Natural Language

RuleBERT is a pre-trained language model that has been fine-tuned on soft logical results. This repo contains the required code for running the experiments of the associated paper.

Installation

0. Clone Repo

git clone https://github.com/MhmdSaiid/RuleBert
cd RuleBERT

1. Create virtual env and install reqs

(optional) virtualenv -m python RuleBERT
pip install -r requirements.txt

2. Download Data

The datasets can be found here. (DISCLAIMER: ~25 GB on disk)

You can also run:

bash download_datasets.sh

Run Experiments

When an experiemnt is complete, the model, the tokenizer, and the results are stored in models/**timestamp**.

i) Single Rules

bash experiments/single_rules/SR.sh data/single_rules 

ii) Rule Union Experiment

bash experiments/union_rules/UR.sh data/union_rules 

iii) Rule Chain Experiment

bash experiments/chain_rules/CR.sh data/chain_rules 

iv) External Datasets

Generate Your Own Data

You can generate your own data for a single rule, a union of rules sharing the same rule head, or a chain of rules.

First, make sure you are in the correct directory.

cd data_generation

1) Single Rule

There are two ways to data for a single rule:

i) Pass Data through Arguments

python DataGeneration.py 
       --rule 'spouse(A,B) :- child(A,B).' 
       --pool_list "[['Anne', 'Bob', 'Charlie'],
                    ['Frank', 'Gary', 'Paul']]" 
       --rule_support 0.67
  • --rule : The rule in string format. Consult here to see how to write a rule.
  • --pool_list : For every variable in the rule, we include a list of possible instantiations.
  • --rule_support : A float representing the rule support. If not specified, rule defaults to a hard rule.
  • --max_num_facts : Maximum number of facts in a generated theory.
  • --num : Total number of theories per generated (rule,facts).
  • --TWL : When called, we use three-way-logic instead of negation as failure. Unsatisifed predicates are no longer considered False.
  • --complementary_rules : A string of complementary rules to add.
  • --p_bar : Boolean to show a progress bar. Deafults to True.

ii) Pass a JSON file

This is more convenient for when rules are long or when there are multiple rules. The JSON file specifies the rule(s), pool list(s), and rule support(s). It is passed as an argument.

python DataGeneration.py --rule_json r1.jsonl

2) Union of Rules

For a union of rules sharing the same rule-head predicate, we pass a JSON file to the command that contaains rules with overlapping rule-head predicates.

python DataGeneration.py --rule_json Multi_rule.json 
                         --type union

--type is used to indicate which type of data generation method should be set to. For a union of rules, we use --type union. If --type single is used, we do single-rule data generation for each rule in the file.

3) Chained Rules

For a chain of rules, the json file should include rules that could be chained together.

python DataGeneration.py --rule_json chain_rules.json 
                         --type chain

The chain depth defaults to 5 --chain_depth 5.

Train your Own Model

To fine-tune the model, run:

# train
python trainer.py --data-dir data/R1/
                  --epochs 3
                  --verbose

When complete, the model and tokenizer are saved in models/**timestamp**.

To test the model, run:

# test
python tester.py --test_data_dir data/test_R1/
                 --model_dir models/**timestamp**
                 --verbose

A JSON file will be saved in model_dir containing the results.

Contact Us

For any inquiries, feel free to contact us, or raise an issue on Github.

Reference

You can cite our work:

@inproceedings{saeed-etal-2021-rulebert,
    title = "{R}ule{BERT}: Teaching Soft Rules to Pre-Trained Language Models",
    author = "Saeed, Mohammed  and
      Ahmadi, Naser  and
      Nakov, Preslav  and
      Papotti, Paolo",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.110",
    pages = "1460--1476",
    abstract = "While pre-trained language models (PLMs) are the go-to solution to tackle many natural language processing problems, they are still very limited in their ability to capture and to use common-sense knowledge. In fact, even if information is available in the form of approximate (soft) logical rules, it is not clear how to transfer it to a PLM in order to improve its performance for deductive reasoning tasks. Here, we aim to bridge this gap by teaching PLMs how to reason with soft Horn rules. We introduce a classification task where, given facts and soft rules, the PLM should return a prediction with a probability for a given hypothesis. We release the first dataset for this task, and we propose a revised loss function that enables the PLM to learn how to predict precise probabilities for the task. Our evaluation results show that the resulting fine-tuned models achieve very high performance, even on logical rules that were unseen at training. Moreover, we demonstrate that logical notions expressed by the rules are transferred to the fine-tuned model, yielding state-of-the-art results on external datasets.",
}

License

MIT

Owner
“If a machine is expected to be infallible, it cannot also be intelligent.” ― Alan Turing
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022