YOLOX Win10 Project

Overview

Introduction

这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改:

1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题

2、CUDA out of memory等显存不够问题

3、增加eval.txt,可以输出IoU=0.5-0.95的AP值,以及Map50和Map50:95

Benchmark

Model size mAPval
0.5:0.95
mAPtest
0.5:0.95
Speed V100
(ms)
Params
(M)
FLOPs
(G)
weights
YOLOX-s 640 40.5 40.5 9.8 9.0 26.8 github
YOLOX-m 640 46.9 47.2 12.3 25.3 73.8 github
YOLOX-l 640 49.7 50.1 14.5 54.2 155.6 github
YOLOX-x 640 51.1 51.5 17.3 99.1 281.9 github
YOLOX-Darknet53 640 47.7 48.0 11.1 63.7 185.3 github

Training on custom data

1、准备数据集

以VOC数据集为例,数据目录如下图所示,datasets/VOCdevkit/VOC2021/(不建议修改年份,如需要修改,则对应修改yolox_voc_s.py中的年份),该文件夹下有三个文件夹,分别为Annotations、JPEGImages、ImageSets,特别注意ImageSets文件夹下须新建Main文件夹,运行dataset_cls.py(注意切换到datasets路径下,可以修改训练集和测试集比例)会自动生成训练文件trainval.txttest.txt

2、修改配置文件

修改exps/example/yolox_voc/yolox_voc_s.py文件 self.num_classes和其他配置变量(自选)

class Exp(MyExp):
    def __init__(self):
        super(Exp, self).__init__()
        self.num_classes = 42         #修改成自己的类别
        self.depth = 0.33
        self.width = 0.50
        self.warmup_epochs = 1

此Exp类体继承MyExp类体,且可以对MyExp的变量重写(因此有更高的优先级),对按住ctrl点击MyExp跳转

class Exp(BaseExp):
    def __init__(self):
        super().__init__()

        # ---------------- model config ---------------- #
        self.num_classes = 80  #因为在yolox_voc_s.py中已经重新赋值,此处不用修改
        self.depth = 1.00
        self.width = 1.00
        self.act = 'silu'

        # ---------------- dataloader config ---------------- #
        # set worker to 4 for shorter dataloader init time
        self.data_num_workers = 1
        self.input_size = (640, 640)  # (height, width)
        # Actual multiscale ranges: [640-5*32, 640+5*32].
        # To disable multiscale training, set the
        # self.multiscale_range to 0.
        self.multiscale_range = 5 #五种输入大小随机调整
        # You can uncomment this line to specify a multiscale range
        # self.random_size = (14, 26)
        self.data_dir = None
        self.train_ann = "instances_train2017.json"
        self.val_ann = "instances_val2017.json"

        # --------------- transform config ----------------- #
        self.mosaic_prob = 1.0   #数据增强概率,可以根据需要调整
        self.mixup_prob = 1.0
        self.hsv_prob = 1.0
        self.flip_prob = 0.5
        self.degrees = 10.0
        self.translate = 0.1
        self.mosaic_scale = (0.1, 2)
        self.mixup_scale = (0.5, 1.5)
        self.shear = 2.0
        self.enable_mixup = True

        # --------------  training config --------------------- #
        self.warmup_epochs = 5
        self.max_epoch = 100  #设置训练轮数
        self.warmup_lr = 0
        self.basic_lr_per_img = 0.01 / 64.0
        self.scheduler = "yoloxwarmcos"
        self.no_aug_epochs = 15 #不适用数据增强轮数
        self.min_lr_ratio = 0.05
        self.ema = True

        self.weight_decay = 5e-4
        self.momentum = 0.9
        self.print_interval = 10 #每隔十步打印输出一次训练信息
        self.eval_interval = 1 #每隔1轮保存一次
        self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]

        # -----------------  testing config ------------------ #
        self.test_size = (640, 640)
        self.test_conf = 0.01
        self.nmsthre = 0.65

可以对上述类体变量进行调整,其中关键变量有input_size、max_epoch、eval_interval

3、开始训练

输入以下命令开始训练,-c 表示加载预训练权重

python tools/train.py  -c /path/to/yolox_s.pth

你也可以对其他参数进行调整,例如:

python tools/train.py  -d 1 -b 8 --fp16 -c /path/to/yolox_s.pth

-d 表示用几块显卡,-b 表示设置batch_size,--fp16 表示半精度训练,-c 表示加载预训练权重,如果在显存不足的情况下,谨慎输入 -o 参数,会占用较多显存

如果训练一半终止后,想继续断点训练,可以输入

python tools/train.py --resume

Evaluation

输入以下代码默认对精度最高模型评估,评估后,可以在YOLOX_outputs/yolox_voc_s/eval.txt中看到IoU=0.5-0.95的AP值,文件最后可以看到Map50Map50:95

python tools/eval.py

如需对设定其他参数,可以输入以下代码,参数意义同训练

python tools/eval.py -n  yolox-s -c yolox_s.pth -b 8 -d 1 --conf 0.001 
                         yolox-m
                         yolox-l
                         yolox-x

Reference

https://github.com/Megvii-BaseDetection/YOLOX

Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022