Official repository for "Intriguing Properties of Vision Transformers" (2021)

Overview

Intriguing Properties of Vision Transformers

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang

Paper Link

Abstract: Vision transformers (ViT) have demonstrated impressive performance across various machine vision tasks. These models are based on multi-head self-attention mechanisms that can flexibly attend to a sequence of image patches to encode contextual cues. An important question is how such flexibility (in attending image-wide context conditioned on a given patch) can facilitate handling nuisances in natural images e.g., severe occlusions, domain shifts, spatial permutations, adversarial and natural perturbations. We systematically study this question via an extensive set of experiments encompassing three ViT families and provide comparisons with a high-performing convolutional neural network (CNN). We show and analyze the following intriguing properties of ViT: (a) Transformers are highly robust to severe occlusions, perturbations and domain shifts, e.g., retain as high as 60% top-1 accuracy on ImageNet even after randomly occluding 80% of the image content. (b) The robust performance to occlusions is not due to a bias towards local textures, and ViTs are significantly less biased towards textures compared to CNNs. When properly trained to encode shape-based features, ViTs demonstrate shape recognition capability comparable to that of human visual system, previously unmatched in the literature. (c) Using ViTs to encode shape representation leads to an interesting consequence of accurate semantic segmentation without pixel-level supervision. (d) Off-the-shelf features from a single ViT model can be combined to create a feature ensemble, leading to high accuracy rates across a range of classification datasets in both traditional and few-shot learning paradigms. We show effective features of ViTs are due to flexible and dynamic receptive fields possible via self-attention mechanisms. Our code will be publicly released.

Citation

@misc{naseer2021intriguing,
      title={Intriguing Properties of Vision Transformers}, 
      author={Muzammal Naseer and Kanchana Ranasinghe and Salman Khan and Munawar Hayat and Fahad Shahbaz Khan and Ming-Hsuan Yang},
      year={2021},
      eprint={2105.10497},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

We are in the process of cleaning our code. We will update this repo shortly. Here are the highlights of what to expect :)

  1. Pretrained ViT models trained on Stylized ImageNet (along with distilled ones). We will provide code to use these models for auto-segmentation.
  2. Training and Evaluations for our proposed off-the-shelf ensemble features.
  3. Code to evaluate any model on our proposed occulusion stratagies (random, foreground and background).
  4. Code for evaluation of permutation invaraince.
  5. Pretrained models to study the effect of varying patch sizes and positional encoding.
  6. Pretrained adversarial patches and code to evalute them.
  7. Training on Stylized Imagenet.

Requirements

pip install -r requirements.txt

Shape Biased Models

Our shape biased pretrained models can be downloaded from here. Code for evaluating their shape bias using auto segmentation on the PASCAL VOC dataset can be found under scripts. Please fix any paths as necessary. You may place the VOC devkit folder under data/voc of fix the paths appropriately.

Running segmentation evaluation on models:

./scripts/eval_segmentation.sh

Visualizing segmentation for images in a given folder:

./scripts/visualize_segmentation.sh

Off the Shelf Classification

Training code for off-the-shelf experiment in classify_metadataset.py. Seven datasets (aircraft CUB DTD fungi GTSRB Places365 INAT) available by default. Set the appropriate dir path in classify_md.sh by fixing DATA_PATH.

Run training and evaluation for a selected dataset (aircraft by default) using selected model (DeiT-T by default):

./scripts/classify_md.sh

Occlusion Evaluation

Evaluation on ImageNet val set (change path in script) for our proposed occlusion techniques:

./scripts/evaluate_occlusion.sh

Permutation Invariance Evaluation

Evaluation on ImageNet val set (change path in script) for the shuffle operation:

./scripts/evaluate_shuffle.sh

Varying Patch Sizes and Positional Encoding

Pretrained models to study the effect of varying patch sizes and positional encoding:

DeiT-T Model Top-1 Top-5 Pretrained
No Pos. Enc. 68.3 89.0 Link
Patch 22 68.7 89.0 Link
Patch 28 65.2 86.7 Link
Patch 32 63.1 85.3 Link
Patch 38 55.2 78.8 Link

References

Code borrowed from DeiT and DINO repositories.

Comments
  • Question about links of pretrained models

    Question about links of pretrained models

    Hi! First of all, thank the authors for the exciting work! I noticed that the checkpoint link of the pretrained 'deit_tiny_distilled_patch16_224' in vit_models/deit.py is different from the one of the shape-biased model DeiT-T-SIN (distilled), as given in README.md. I thought deit_tiny_distilled_patch16_224 has the same definition with DeiT-T-SIN (distilled). Do they have differences in model architecture or training procedure?

    opened by ZhouqyCH 3
  • Two questions on your paper

    Two questions on your paper

    Hi. This is heonjin.

    Firstly, big thanks to you and your paper. well-read and precise paper! I have two questions on your paper.

    1. Please take a look at Figure 9. image On the 'no positional encoding' experiment, there is a peak on 196 shuffle size of "DeiT-T-no-pos". Why is there a peak? and I wonder why there is a decreasing from 0 shuffle size to 64 of "DeiT-T-no-pos".

    2. On the Figure 14, image On the Aircraft(few shot), Flower(few shot) dataset, CNN performs better than DeiT. Could you explain this why?

    Thanks in advance.

    opened by hihunjin 2
  • Attention maps DINO Patchdrop

    Attention maps DINO Patchdrop

    Hi, thanks for the amazing paper.

    My question is about how which patches are dropped from the image with the DINO model. It looks like in the code in evaluate.py on line 132 head_number = 1. I want to understand the reason why this number was chosen (the other params used to index the attention maps seem to make sense). Wouldn't averaging the attention maps across heads give you better segmentation?

    Thanks,

    Ravi

    opened by rraju1 1
  • Support CPU when visualizing segmentations

    Support CPU when visualizing segmentations

    Most of the code to visualize segmentation is ready for GPU and CPU, but I bumped into this one place where there is a hard-coded .cuda() call. I changed it to .to(device) to support CPU.

    opened by cgarbin 0
  • Expand the instructions to install the PASCAL VOC dataset

    Expand the instructions to install the PASCAL VOC dataset

    I inspected the code to understand the expected directory structure. This note in the README may help other users put the dataset in the right place from the start.

    opened by cgarbin 0
  • Add note to use Python 3.8 because of PyTorch 1.7

    Add note to use Python 3.8 because of PyTorch 1.7

    PyTorch 1.7 requires Python 3.8. Refer to the discussion in https://github.com/pytorch/pytorch/issues/47354.

    Suggest adding this note to the README to help reproduce the environment because running pip install -r requirements.txt with the wrong version of Python gives an obscure error message.

    opened by cgarbin 0
  • Amazing work, but can it work on DETR?

    Amazing work, but can it work on DETR?

    ViT family show strong robustness on RandomDrop and Domain shift Problem. The thing is , I 'm working on object detection these days,detr is an end to end object detection methods which adopted Transformer's encoder decoder part, but the backbone I use , is Resnet50, it can still find the properties that your paper mentioned. Above all I want to ask two questions: (1).Do these intriguing properties come from encoder、decoder part? (2).What's the difference between distribution shift and domain shift(I saw distribution shift first time on your paper)?

    opened by 1184125805 0
Owner
Muzammal Naseer
PhD student at Australian National University.
Muzammal Naseer
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022