ocroseg - This is a deep learning model for page layout analysis / segmentation.

Overview

ocroseg

This is a deep learning model for page layout analysis / segmentation.

There are many different ways in which you can train and run it, but by default, it will simply return the text lines in a page image.

Segmentation

Segmentation is carried out using the ocroseg.Segmenter class. This needs a model that you can download or train yourself.

%%bash
model=lowskew-000000259-011440.pt
test -f $model || wget --quiet -nd https://storage.googleapis.com/tmb-models/$model
%pylab inline
rc("image", cmap="gray", interpolation="bicubic")
figsize(10, 10)
Populating the interactive namespace from numpy and matplotlib

The Segmenter object handles page segmentation using a DL model.

import ocroseg
seg = ocroseg.Segmenter("lowskew-000000259-011440.pt")
seg.model
Sequential(
  (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True)
  (2): ReLU()
  (3): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
  (4): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
  (6): ReLU()
  (7): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
  (8): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
  (10): ReLU()
  (11): LSTM2(
    (hlstm): RowwiseLSTM(
      (lstm): LSTM(64, 32, bidirectional=1)
    )
    (vlstm): RowwiseLSTM(
      (lstm): LSTM(64, 32, bidirectional=1)
    )
  )
  (12): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
  (13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
  (14): ReLU()
  (15): LSTM2(
    (hlstm): RowwiseLSTM(
      (lstm): LSTM(32, 32, bidirectional=1)
    )
    (vlstm): RowwiseLSTM(
      (lstm): LSTM(64, 32, bidirectional=1)
    )
  )
  (16): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1))
  (17): Sigmoid()
)

Let's segment a page with this.

image = 1.0 - imread("testdata/W1P0.png")[:2000]
print image.shape
imshow(image)
(2000, 2592)





<matplotlib.image.AxesImage at 0x7f6078b09690>

png

The extract_textlines method returns a list of text line images, bounding boxes, etc.

lines = seg.extract_textlines(image)
imshow(lines[0]['image'])
<matplotlib.image.AxesImage at 0x7f60781c05d0>

png

The segmenter accomplishes this by predicting seeds for each text line. With a bit of mathematical morphology, these seeds are then extended into a text line segmentation.

imshow(seg.lines)
<matplotlib.image.AxesImage at 0x7f60781a5510>

png

Training

The text line segmenter is trained using pairs of page images and line images stored in tar files.

%%bash
tar -ztvf testdata/framedlines.tgz | sed 6q
-rw-rw-r-- tmb/tmb      110404 2017-03-19 16:47 A001BIN.framed.png
-rw-rw-r-- tmb/tmb       10985 2017-03-16 16:15 A001BIN.lines.png
-rw-rw-r-- tmb/tmb       74671 2017-03-19 16:47 A002BIN.framed.png
-rw-rw-r-- tmb/tmb        8528 2017-03-16 16:15 A002BIN.lines.png
-rw-rw-r-- tmb/tmb      147716 2017-03-19 16:47 A003BIN.framed.png
-rw-rw-r-- tmb/tmb       12023 2017-03-16 16:15 A003BIN.lines.png


tar: write error
from dlinputs import tarrecords
sample = tarrecords.tariterator(open("testdata/framedlines.tgz")).next()
subplot(121); imshow(sample["framed.png"])
subplot(122); imshow(sample["lines.png"])
<matplotlib.image.AxesImage at 0x7f60e3d9bc10>

png

There are also some tools for data augmentation.

Generally, you can train these kinds of segmenters on any kind of image data, though they work best on properly binarized, rotation and skew-normalized page images. Note that by conventions, pages are white on black. You need to make sure that the model you load matches the kinds of pages you are trying to segment.

The actual models used are pretty complex and require LSTMs to function well, but for demonstration purposes, let's define and use a tiny layout analysis model. Look in bigmodel.py for a realistic model.

%%writefile tinymodel.py
def make_model():
    r = 3
    model = nn.Sequential(
        nn.Conv2d(1, 8, r, padding=r//2),
        nn.ReLU(),
        nn.MaxPool2d(2, 2),
        nn.Conv2d(8, 1, r, padding=r//2),
        nn.Sigmoid()
    )
    return model
Writing tinymodel.py
%%bash
./ocroseg-train -d testdata/framedlines.tgz --maxtrain 10 -M tinymodel.py --display 0
raw sample:
__key__ 'A001BIN'
__source__ 'testdata/framedlines.tgz'
lines.png float32 (3300, 2592)
png float32 (3300, 2592)

preprocessed sample:
__key__ <type 'list'> ['A002BIN']
__source__ <type 'list'> ['testdata/framedlines.tgz']
input float32 (1, 3300, 2592, 1)
mask float32 (1, 3300, 2592, 1)
output float32 (1, 3300, 2592, 1)

ntrain 0
model:
Sequential(
  (0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): ReLU()
  (2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
  (3): Conv2d(8, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (4): Sigmoid()
)

0 0 ['A006BIN'] 0.24655306 ['A006BIN'] 0.31490618 0.55315816 lr 0.03
1 1 ['A007BIN'] 0.24404158 ['A007BIN'] 0.30752876 0.54983306 lr 0.03
2 2 ['A004BIN'] 0.24024434 ['A004BIN'] 0.31007746 0.54046077 lr 0.03
3 3 ['A008BIN'] 0.23756175 ['A008BIN'] 0.30573484 0.5392694 lr 0.03
4 4 ['A00LBIN'] 0.22300518 ['A00LBIN'] 0.28594157 0.52989864 lr 0.03
5 5 ['A00MBIN'] 0.22032338 ['A00MBIN'] 0.28086954 0.52204597 lr 0.03
6 6 ['A00DBIN'] 0.22794804 ['A00DBIN'] 0.27466372 0.512208 lr 0.03
7 7 ['A009BIN'] 0.22404794 ['A009BIN'] 0.27621177 0.51116604 lr 0.03
8 8 ['A001BIN'] 0.22008553 ['A001BIN'] 0.27836022 0.5008192 lr 0.03
9 9 ['A00IBIN'] 0.21842314 ['A00IBIN'] 0.26755702 0.4992323 lr 0.03
Owner
NVIDIA Research Projects
NVIDIA Research Projects
一款基于Qt与OpenCV的仿真数字示波器

一款基于Qt与OpenCV的仿真数字示波器

郭赟 4 Nov 02, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library

gosseract OCR Golang OCR package, by using Tesseract C++ library. OCR Server Do you just want OCR server, or see the working example of this package?

Hiromu OCHIAI 1.9k Dec 28, 2022
virtual mouse which can copy files, close tabs and many other features !

AI Virtual Mouse Controller Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip loca

Diwas Pandey 23 Oct 05, 2021
Face Recognizer using Opencv Python

Face Recognizer using Opencv Python The first step create your own dataset with file open-cv-create_dataset second step You can put the photo accordin

Han Izza 2 Nov 16, 2021
Recognizing the text contents from a scanned visiting card

Recognizing the text contents from a scanned visiting card. The application which is used to recognize the text from scanned images,printeddocuments,r

Faizan Habib 1 Jan 28, 2022
Code for CVPR 2022 paper "SoftGroup for Instance Segmentation on 3D Point Clouds"

SoftGroup We provide code for reproducing results of the paper SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022) Author: Thang Vu, Ko

Thang Vu 231 Dec 27, 2022
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

188 Dec 28, 2022
The papers published in top-tier AI conferences in recent years.

AI-conference-papers The papers published in top-tier AI conferences in recent years. Paper table AAAI ICLR CVPR ICML ICCV ECCV NIPS 2019 ✔️ ✔️ ✔️ ✔️

Jinbae Park 6 Dec 09, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Subramanyam 76 Dec 06, 2022
pulse2percept: A Python-based simulation framework for bionic vision

pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati

67 Dec 29, 2022
Optical character recognition for Japanese text, with the main focus being Japanese manga

Manga OCR Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Tran

Maciej Budyś 327 Jan 01, 2023
Automatically fishes for you while you are afk :)

Dank-memer-afk-script A simple and quick way to make easy money in Dank Memer! How to use Open a discord channel which has the Dank Memer bot enabled.

Pranav Doshi 9 Nov 11, 2022
deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications

Automatic Weapon Detection Deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications. Loved the pro

Janhavi 4 Mar 04, 2022
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022