Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

Overview

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object.

Build Status codecov Documentation Install with PyPi

oneFace is an easy way to create interfaces in Python, just decorate your function and mark the type and range of the arguments:

from oneface import one, Arg

@one
def bmi(name: Arg(str),
        height: Arg(float, [100, 250]) = 160,
        weight: Arg(float, [0, 300]) = 50.0):
    BMI = weight / (height / 100) ** 2
    print(f"Hi {name}. Your BMI is: {BMI}")
    return BMI


# run cli
bmi.cli()
# or run qt_gui
bmi.qt_gui()
# or run dash web app
bmi.dash_app()

These code will generate the following interfaces:

CLI Qt Dash
CLI Qt Dash

Features

  • Generate CLI, Qt GUI, Dash Web app from a python function.
  • Automatically check the type and range of input parameters and pretty print them.
  • Easy extension of parameter types and GUI widgets.

Detail usage see the documentation and pythondig.

Installation

To install oneFace with complete dependency:

$ pip install oneface[all]

Or install with just qt or dash dependency:

$ pip install oneface[qt]  # qt
$ pip install oneface[dash]  # dash
Comments
  • Wrap CLI

    Wrap CLI

    Wrap a CLI program to a GUI/Web interface app.

    Using a .yaml as config to specify the arguments:

    # open_browser_oneface.yaml
    name: open_browser
    
    command: python -m webbrowser {is_tab} {url} 
    
    arguments:
    
      is_tab:
        type: bool
        true_content: "-t"
        false_content: ""
    
      url:
        type: str
    

    Launch the app with:

    $ python -m onface.wrap_cli run open_browser_oneface.yaml qt_gui
    

    It will get a GUI app.

    enhancement 
    opened by Nanguage 1
  • A Thanks Message

    A Thanks Message

    Hello, i am Onur, i am a CTO of a community that develop Blockchain based Decentralized Application Network. This repository have a very good idea. All contributor of this project and me should develop this project and use in the other project. Let's not stop developing.

    Onur Atakan ULUSOY - CTO of Decentra Network Community

    opened by onuratakan 1
  • Implicit Arg convert from Python builtin types

    Implicit Arg convert from Python builtin types

    Allow type annotation with python builtin types, for example:

    from oneface import one, Arg
    
    @one
    def bmi(name: str,
            height: (float, [100, 250]) = 160,
            weight: (float, [0, 300]) = 50.0):
        BMI = weight / (height / 100) ** 2
        print(f"Hi {name}. Your BMI is: {BMI}")
        return BMI
    
    # run cli
    bmi.cli()
    

    Let the annotation automatically convert to Arg when parse the parameters.

    enhancement 
    opened by Nanguage 1
  • Integrate generated qt window to a Qt app.

    Integrate generated qt window to a Qt app.

    import sys
    from oneface.qt import qt_window
    from oneface import one
    from qtpy import QtWidgets
    
    app = QtWidgets.QApplication([])
    
    
    @qt_window
    @one
    def add(a: int, b: int):
        return a + b
    
    @qt_window
    @one
    def mul(a: int, b: int):
        return a * b
    
    
    main_window = QtWidgets.QWidget()
    main_window.setWindowTitle("MyApp")
    main_window.setFixedSize(200, 100)
    layout = QtWidgets.QVBoxLayout(main_window)
    layout.addWidget(QtWidgets.QLabel("Apps:"))
    btn_open_add = QtWidgets.QPushButton("add")
    btn_open_mul = QtWidgets.QPushButton("mul")
    btn_open_add.clicked.connect(add.show)
    btn_open_mul.clicked.connect(mul.show)
    layout.addWidget(btn_open_add)
    layout.addWidget(btn_open_mul)
    main_window.show()
    
    sys.exit(app.exec())
    
    enhancement 
    opened by Nanguage 0
  • Dash: the 'plotly' result_result_type

    Dash: the 'plotly' result_result_type

    Allow render the result with ploty. The wraped function return a plotly figure object:

    from oneface import one, Arg
    import plotly.express as px
    import numpy as np
    
    @one
    def draw_random_points(n: Arg[int, [1, 10000]] = 100):
        x, y = np.random.random(n), np.random.random(n)
        fig = px.scatter(x=x, y=y)
        return fig
    
    draw_random_points.dash_app(
        result_show_type='plotly',
        debug=True)
    
    enhancement 
    opened by Nanguage 0
  • Flask integration of dash app

    Flask integration of dash app

    Embeding the generated dash app as a route of flask server.

    # demo_flask_integrate.py
    from flask import Flask
    from oneface.dash_app import flask_route
    from oneface.core import one
    
    server = Flask("test_dash_app")
    
    @flask_route(server, "/add")
    @one
    def add(a: int, b: int) -> int:
        return a + b
    
    @flask_route(server, "/mul")
    @one
    def mul(a: int, b: int) -> int:
        return a * b
    
    server.run("127.0.0.1", 8088)
    

    Run this will launch a flask server support run multiple dash app from different route.

    References:

    • https://blog.finxter.com/dash-flask/
    enhancement 
    opened by Nanguage 0
  • Define custom dash commpont to support complex input type.

    Define custom dash commpont to support complex input type.

    For example:

    from oneface import one, Arg
    from oneface.dash_app import App, InputItem
    from dash import dcc, html
    
    class Person:
        def __init__(self, name, age):
            self.name = name
            self.age = age
    
    
    def check_person_type(val, tp):
        return (
            isinstance(val, tp) and
            isinstance(val.name, str) and
            isinstance(val.age, int)
        )
    
    Arg.register_type_check(Person, check_person_type)
    Arg.register_range_check(Person, lambda val, range: range[0] <= val.age <= range[1])
    
    class PersonInputItem(InputItem):
        def get_input(self):
            if self.default:
                default_val = f"Person('{self.default.name}', {self.default.age})"
            else:
                default_val = ""
            return dcc.Input(
                placeholder="example: Person('age', 20)",
                type="text",
                value=default_val,
                style={
                    "width": "100%",
                    "height": "40px",
                    "margin": "5px",
                    "font-size": "20px",
                }
            )
    
    
    App.register_widget(Person, PersonInputItem)
    App.register_type_convert(Person, lambda s: eval(s))
    
    
    @one
    def print_person(person: Arg(Person, [0, 100]) = Person("Tom", 10)):
        print(f"{person.name} is {person.age} years old.")
    
    
    print_person.dash_app()
    
    

    This code using the serialized input Person, how to define a "Composite components" in dash to support Person input? Just like in Qt:

    image

    question 
    opened by Nanguage 0
Releases(0.1.9)
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Jan 07, 2023
3D Vision functions with end-to-end support for deep learning developers, written in Ivy.

Ivy vision focuses predominantly on 3D vision, with functions for camera geometry, image projections, co-ordinate frame transformations, forward warping, inverse warping, optical flow, depth triangul

Ivy 61 Dec 29, 2022
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022
Python & Julia port of codes in excellent R books

X4DS This repo is a collection of Python & Julia port of codes in the following excellent R books: An Introduction to Statistical Learning (ISLR) Stat

Gitony 5 Jun 21, 2022
Ana's Portfolio

Ana's Portfolio ✌️ Welcome to my Portfolio! You will find here different Projects I have worked on (from scratch) 💪 Projects 💻 1️⃣ Hangman game (Mad

Ana Katherine Cortes Sobrino 9 Mar 15, 2022
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022
Graphical visualizer for spectralyze by Lauchmelder23

spectralyze visualizer Graphical visualizer for spectralyze by Lauchmelder23 Install Install matplotlib and ffmpeg. Put ffmpeg.exe in same folder as v

Matthew 1 Dec 21, 2021
A Python library for plotting hockey rinks with Matplotlib.

Hockey Rink A Python library for plotting hockey rinks with Matplotlib. Installation pip install hockey_rink Current Rinks The following shows the cus

24 Jan 02, 2023
This is a small program that prints a user friendly, visual representation, of your current bsp tree

bspcq, q for query A bspc analyzer (utility for bspwm) This is a small program that prints a user friendly, visual representation, of your current bsp

nedia 9 Apr 24, 2022
A Bokeh project developed for learning and teaching Bokeh interactive plotting!

Bokeh-Python-Visualization A Bokeh project developed for learning and teaching Bokeh interactive plotting! See my medium blog posts about making bokeh

Will Koehrsen 350 Dec 05, 2022
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
A python visualization of the A* path finding algorithm

A python visualization of the A* path finding algorithm. It allows you to pick your start, end location and make obstacles and then view the process of finding the shortest path. You can also choose

Kimeon 4 Aug 02, 2022
PanGraphViewer -- show panenome graph in an easy way

PanGraphViewer -- show panenome graph in an easy way Table of Contents Versions and dependences Desktop-based panGraphViewer Library installation for

16 Dec 17, 2022
Simple CLI python app to show a stocks graph performance. Made with Matplotlib and Tiingo.

stock-graph-python Simple CLI python app to show a stocks graph performance. Made with Matplotlib and Tiingo. Tiingo API Key You will need to add your

Toby 3 May 14, 2022
A Python wrapper of Neighbor Retrieval Visualizer (NeRV)

PyNeRV A Python wrapper of the dimensionality reduction algorithm Neighbor Retrieval Visualizer (NeRV) Compile Set up the paths in Makefile then make.

2 Aug 29, 2021
A Scheil-Gulliver simulation tool using pycalphad.

scheil A Scheil-Gulliver simulation tool using pycalphad. import matplotlib.pyplot as plt from pycalphad import Database, variables as v from scheil i

pycalphad 6 Dec 10, 2021
Automate the case review on legal case documents and find the most critical cases using network analysis

Automation on Legal Court Cases Review This project is to automate the case review on legal case documents and find the most critical cases using netw

Yi Yin 7 Dec 28, 2022
Python scripts to manage Chia plots and drive space, providing full reports. Also monitors the number of chia coins you have.

Chia Plot, Drive Manager & Coin Monitor (V0.5 - April 20th, 2021) Multi Server Chia Plot and Drive Management Solution Be sure to ⭐ my repo so you can

338 Nov 25, 2022
A set of three functions, useful in geographical calculations of different sorts

GreatCircle A set of three functions, useful in geographical calculations of different sorts. Available for PHP, Python, Javascript and Ruby. Live dem

72 Sep 30, 2022
Visualize large time-series data in plotly

plotly_resampler enables visualizing large sequential data by adding resampling functionality to Plotly figures. In this Plotly-Resampler demo over 11

PreDiCT.IDLab 604 Dec 28, 2022