Nasdaq Cloud Data Service (NCDS) provides a modern and efficient method of delivery for realtime exchange data and other financial information. This repository provides an SDK for developing applications to access the NCDS.

Overview

Nasdaq Cloud Data Service (NCDS)

Nasdaq Cloud Data Service (NCDS) provides a modern and efficient method of delivery for realtime exchange data and other financial information. Data is made available through a suite of APIs, allowing for effortless integration of data from disparate sources, and a dramatic reduction in time to market for customer-designed applications. The API is highly scalable, and robust enough to support the delivery of real-time exchange data.

Items To Note

  • Connecting to the API requires credentials, which are provided by the Nasdaq Data Operations team during an on-boarding process
  • This sample code only connects to one topic (NLSCTA); during on-boarding process, you will receive a topic list that you're entitled to.
  • See https://github.com/Nasdaq/NasdaqCloudDataService-SDK-Java for our officially support Java-based SDK.

Table of Contents

Getting Started

Python version support

The SDK currently supports Python 3.9 and above

Get the SDK

The source code is currently hosted on GitHub at: https://github.com/Nasdaq/NasdaqCloudDataService-SDK-Python

  • Clone the repository: git clone https://github.com/Nasdaq/NasdaqCloudDataService-SDK-Python.git
  • Move into the directory cd NasdaqCloudDataService-SDK-Python
  • Install the library and its dependencies from local source with pip install -e .

Optional: to use the Jupyter notebook provided,

  • Download Jupyter notebook using either pip pip3 install notebook or conda conda install -c conda-forge notebook
  • To run the notebook, use the command jupyter notebook and the Notebook Dashboard will open in your browser
  • Select the file python_sdk_examples.ipynb

Retrieving certificates

Run ncdssdk_client/src/main/python/ncdsclient/NCDSSession.py with arguments, which takes the path where the certificate should be installed.

For example: python3.9 ncdssdk_client/src/main/python/ncdsclient/NCDSSession.py -opt INSTALLCERTS -path /my/trusted/store/ncdsinstallcerts

Stream configuration

Replace example stream properties in the file kafka-config.json (https://github.com/Nasdaq/NasdaqCloudDataService-SDK-Python/blob/master/ncdssdk_client/src/main/python/resources/kafka-config.json) with provided values during on-boarding.

Required kafka configuration

"bootstrap.servers": {streams_endpoint_url}:9094
"ssl.ca.location": ca.crt

For optional consumer configurations see: https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md

Client Authentication configuration

Replace example client authentication properties in the file client-authentication-config.json (https://github.com/Nasdaq/NasdaqCloudDataService-SDK-Python/blob/master/ncdssdk_client/src/main/python/resources/client-authentication-config.json) with valid credentials provided during on-boarding.

oauth.token.endpoint.uri: https://{auth_endpoint_url}/auth/realms/demo/protocol/openid-connect/token
oauth.client.id: client
oauth.client.secret: client-secret

Create NCDS Session Client

How to run:

-opt -- Provide the operation you want to perform \n" +
  "        * TOP - View the top nnn records in the Topic/Stream\n" +
  "        * SCHEMA - Display the Schema for the topic\n" +
  "        * METRICS - Display the Metrics for the topic\n" +
  "        * TOPICS - List of streams available on Nasdaq Cloud DataService\n" +
  "        * GETMSG - Get one example message for the given message name\n" +
  "        * INSTALLCERTS - Install certificate to keystore\n" +
  "        * CONTSTREAM   - Retrieve continuous stream  \n" +
  "        * FILTERSTREAM  - Retrieve continuous stream filtered by symbols and/or msgtypes \n" +
  "        * HELP - help \n" +
"-topic -- Provide topic for selected option         --- REQUIRED for TOP,SCHEMA,METRICS,GETMSG,CONTSTREAM and FILTERSTREAM \n" +
"-symbols -- Provide symbols comma separated list    --- OPTIONAL for FILTERSTREAM" +
"-msgnames -- Provide msgnames comma separated list  --- OPTIONAL for FILTERSTREAM" +
"-authprops -- Provide Client Properties File path   --- For using different set of Client Authentication Properties \n" +
"-kafkaprops -- Provide Kafka Properties File path   --- For using different set of Kafka Properties \n" +
"-n -- Provide number of messages to retrieve        --- REQUIRED for TOP \n" +
"-msgName -- Provide name of message based on schema --- REQUIRED for GETMSG \n" +
"-path -- Provide the path for key store             --- REQUIRED for INSTALLCERTS \n" +
"-timestamp -- Provide timestamp in milliseconds     --- OPTIONAL for TOP, CONTSTREAM and FILTERSTREAM\n"

A few examples:

Get first 100 records for given stream

python3.9 ncdssdk_client/src/main/python/ncdsclient/NCDSSession.py -opt TOP -n 100 -topic NLSCTA

Get all available streams

python3.9 ncdssdk_client/src/main/python/ncdsclient/NCDSSession.py -opt TOPICS

Using the SDK

Below are several examples for how to access data using the SDK. A Jupyter notebook with this same code and information is provided in the file python_sdk_examples.ipnyb

To run these examples, you will need the import and configuration dictionaries below. Replace the config information with your credentials.

from ncdssdk import NCDSClient

security_cfg = {
    "oauth.token.endpoint.uri": "https://{auth_endpoint_url}/auth/realms/demo/protocol/openid-connect/token",
    "oauth.client.id": "client",
    "oauth.client.secret": "client-secret"
}
kafka_cfg = {
    "bootstrap.servers": "{streams_endpoint_url}:9094",
    "ssl.ca.location": "ca.crt",
    "auto.offset.reset": "earliest"
}

Getting list of data stream available

List all available data stream for the user

ncds_client = NCDSClient(security_cfg, kafka_cfg)
topics = ncds_client.list_topics_for_client()
print("Data set topics:")
for topic_entry in topics:
print(topic_entry)

Example output:

List of streams available on Nasdaq Cloud Data Service:
GIDS
NLSUTP
NLSCTA

Getting schema for the stream

This method returns the schema for the stream in Apache Avro format (https://avro.apache.org/docs/current/spec.html)

ncds_client = NCDSClient(security_cfg, kafka_cfg)
topic = "NLSCTA"
schema = ncds_client.get_schema_for_topic(topic)
print(schema)

Example output:

[ {
"type" : "record",
"name" : "SeqAdjClosingPrice",
"namespace" : "com.nasdaq.equities.trades.applications.nls.messaging.binary21",
"fields" : [ {
  "name" : "SoupPartition",
  "type" : "int"
}, {
  "name" : "SoupSequence",
  "type" : "long"
}, {
  "name" : "trackingID",
  "type" : "long"
}, {
  "name" : "msgType",
  "type" : "string"
}, {
  "name" : "symbol",
  "type" : "string"
}, {
  "name" : "securityClass",
  "type" : "string"
}, {
  "name" : "adjClosingPrice",
  "type" : "int"
} ],
"version" : "1"
}, {...
} .......
.... ]

Get first 10 messages of the stream

ncds_client = NCDSClient(security_cfg, kafka_cfg)
topic = "NLSCTA"
records = ncds_client.top_messages(topic)
for i in range(0, 10):
    print("key: ", records[i].key())
    print("value: ", str(records[i].value()))

Example output:

Top 10 Records for the Topic: NLSCTA
key: 14600739
value: {"SoupPartition": 0, "SoupSequence": 14600739, "trackingID": 72000000024569, "msgType": "S", "event": "E", "schema_name": "SeqSystemEventMessage"}
key: 14600740
value: {"SoupPartition": 0, "SoupSequence": 14600740, "trackingID": 72900000006514, "msgType": "J", "symbol": "A", "securityClass": "N", "consHigh": 1487799, "consLow": 1466600, "consClose": 1478100, "cosolidatedVolume": 1259303, "consOpen": 1486800, "schema_name": "SeqEndOfDayTradeSummary"}
key: 14600741
value: {"SoupPartition": 0, "SoupSequence": 14600741, "trackingID": 72900000006514, "msgType": "J", "symbol": "AA", "securityClass": "N", "consHigh": 378039, "consLow": 366800, "consClose": 368400, "cosolidatedVolume": 6047752, "consOpen": 372000, "schema_name": "SeqEndOfDayTradeSummary"}
key: 14600742
value: {"SoupPartition": 0, "SoupSequence": 14600742, "trackingID": 72900000006514, "msgType": "J", "symbol": "AAA", "securityClass": "P", "consHigh": 250400, "consLow": 250101, "consClose": 250250, "cosolidatedVolume": 3121, "consOpen": 250400, "schema_name": "SeqEndOfDayTradeSummary"}
key: 14600743
value: {"SoupPartition": 0, "SoupSequence": 14600743, "trackingID": 72900000006514, "msgType": "J", "symbol": "AAAU", "securityClass": "P", "consHigh": 176500, "consLow": 174700, "consClose": 176000, "cosolidatedVolume": 303143, "consOpen": 175000, "schema_name": "SeqEndOfDayTradeSummary"}
key: 14600744
value: {"SoupPartition": 0, "SoupSequence": 14600744, "trackingID": 72900000006514, "msgType": "J", "symbol": "AAC", "securityClass": "N", "consHigh": 97900, "consLow": 97500, "consClose": 97500, "cosolidatedVolume": 19787, "consOpen": 97600, "schema_name": "SeqEndOfDayTradeSummary"}
key: 14600745
value: {"SoupPartition": 0, "SoupSequence": 14600745, "trackingID": 72900000006514, "msgType": "J", "symbol": "AAC+", "securityClass": "N", "consHigh": 12800, "consLow": 12000, "consClose": 12500, "cosolidatedVolume": 85652, "consOpen": 12300, "schema_name": "SeqEndOfDayTradeSummary"}
key: 14600746
value: {"SoupPartition": 0, "SoupSequence": 14600746, "trackingID": 72900000006514, "msgType": "J", "symbol": "AAC=", "securityClass": "N", "consHigh": 100500, "consLow": 99500, "consClose": 100000, "cosolidatedVolume": 74060, "consOpen": 99500, "schema_name": "SeqEndOfDayTradeSummary"}
key: 14600747
value: {"SoupPartition": 0, "SoupSequence": 14600747, "trackingID": 72900000006514, "msgType": "J", "symbol": "AAIC", "securityClass": "N", "consHigh": 41850, "consLow": 40600, "consClose": 40600, "cosolidatedVolume": 241597, "consOpen": 41800, "schema_name": "SeqEndOfDayTradeSummary"}
key: 14600748
value: {"SoupPartition": 0, "SoupSequence": 14600748, "trackingID": 72900000006514, "msgType": "J", "symbol": "AAIC-B", "securityClass": "N", "consHigh": 249700, "consLow": 249700, "consClose": 249700, "cosolidatedVolume": 238, "consOpen": 249700, "schema_name": "SeqEndOfDayTradeSummary"}

Get first 10 messages of the stream from given timestamp

This returns the first 10 available messages of the stream given timestamp in milliseconds since the UNIX epoch.

ncds_client = NCDSClient(security_cfg, kafka_cfg)
topic="NLSCTA"
timestamp = 1590084446510
records = ncds_client.top_messages(topic, timestamp)
for i in range(0, 10):
    print("key: ", records[i].key())
    print("value: ", str(records[i].value()))

Example output:

Offset: 105834100
Top 10 Records for the Topic:NLSCTA
key:9362630
value :{"SoupPartition": 0, "SoupSequence": 9362630, "trackingID": 50845551492208, "msgType": "T", "marketCenter": "L", "symbol": "SIVR    ", "securityClass": "P", "controlNumber": "0000A2MLOB", "price": 164797, "size": 1, "saleCondition": "@  o", "cosolidatedVolume": 520174}
key:9362631
value :{"SoupPartition": 0, "SoupSequence": 9362631, "trackingID": 50845557908136, "msgType": "T", "marketCenter": "Q", "symbol": "TJX     ", "securityClass": "N", "controlNumber": "   8358213", "price": 540300, "size": 100, "saleCondition": "@   ", "cosolidatedVolume": 16278768}
key:9362632
value :{"SoupPartition": 0, "SoupSequence": 9362632, "trackingID": 50845565203932, "msgType": "T", "marketCenter": "L", "symbol": "CMI     ", "securityClass": "N", "controlNumber": "0000A2MLOC", "price": 1579900, "size": 100, "saleCondition": "@   ", "cosolidatedVolume": 568622}
key:9362633
value :{"SoupPartition": 0, "SoupSequence": 9362633, "trackingID": 50845565791061, "msgType": "T", "marketCenter": "L", "symbol": "UTI     ", "securityClass": "N", "controlNumber": "0000A2MLOD", "price": 70150, "size": 64, "saleCondition": "@  o", "cosolidatedVolume": 151359}
key:9362634
value :{"SoupPartition": 0, "SoupSequence": 9362634, "trackingID": 50845566628604, "msgType": "T", "marketCenter": "L", "symbol": "UFS     ", "securityClass": "N", "controlNumber": "0000A2MLOE", "price": 203660, "size": 24, "saleCondition": "@  o", "cosolidatedVolume": 664962}
key:9362635
value :{"SoupPartition": 0, "SoupSequence": 9362635, "trackingID": 50845569154140, "msgType": "T", "marketCenter": "L", "symbol": "KR      ", "securityClass": "N", "controlNumber": "0000A2MLOF", "price": 320350, "size": 100, "saleCondition": "@   ", "cosolidatedVolume": 4054473}
key:9362636
value :{"SoupPartition": 0, "SoupSequence": 9362636, "trackingID": 50845577944984, "msgType": "T", "marketCenter": "L", "symbol": "PAGP    ", "securityClass": "N", "controlNumber": "0000A2MLOG", "price": 98350, "size": 100, "saleCondition": "@   ", "cosolidatedVolume": 1557084}
key:9362637
value :{"SoupPartition": 0, "SoupSequence": 9362637, "trackingID": 50845588007117, "msgType": "T", "marketCenter": "L", "symbol": "LUV     ", "securityClass": "N", "controlNumber": "0000A2MLOH", "price": 297413, "size": 4, "saleCondition": "@  o", "cosolidatedVolume": 16791899}
key:9362638
value :{"SoupPartition": 0, "SoupSequence": 9362638, "trackingID": 50845596356365, "msgType": "T", "marketCenter": "L", "symbol": "M       ", "securityClass": "N", "controlNumber": "0000A2MLOI", "price": 54000, "size": 10, "saleCondition": "@  o", "cosolidatedVolume": 39273663}
key:9362639
value :{"SoupPartition": 0, "SoupSequence": 9362639, "trackingID": 50845600594567, "msgType": "T", "marketCenter": "L", "symbol": "TTM     ", "securityClass": "N", "controlNumber": "0000A2MLOJ", "price": 56000, "size": 400, "saleCondition": "@   ", "cosolidatedVolume": 1293244}

Get example message from stream

Print message to the console for given message name.

ncds_client = NCDSClient(security_cfg, kafka_cfg)
topic = "NLSCTA"
print(ncds_client.get_sample_messages(topic, "SeqDirectoryMessage", all_messages=False))

Example output:

{'SoupPartition': 0, 'SoupSequence': 500, 'trackingID': 11578737109589, 'msgType': 'R', 'symbol': 'AMN', 'marketClass': 'N', 'fsi': '', 'roundLotSize': 100, 'roundLotOnly': 'N', 'issueClass': 'C', 'issueSubtype': 'Z', 'authenticity': 'P', 'shortThreshold': 'N', 'ipo': '', 'luldTier': '2', 'etf': 'N', 'etfFactor': 0, 'inverseETF': 'N', 'compositeId': 'BBG000BCT197', 'schema_name': 'SeqDirectoryMessage'}

Get continuous stream

ncds_client = NCDSClient(security_cfg, kafka_cfg)
topic = "NLSCTA"
consumer = ncds_client.ncds_kafka_consumer(topic)
while True:
    messages = consumer.consume(num_messages=1, timeout=5)
    if len(messages) == 0:
        print(f"No Records Found for the Topic: {topic}")
              
    for message in messages:
        print(f"value :" + message.value())

Example output: note that only the first ten messages of the stream are shown in this example

value :{"SoupPartition": 0, "SoupSequence": 1, "trackingID": 7233292771056, "msgType": "S", "event": "O", "schema_name": "SeqSystemEventMessage"}
value :{"SoupPartition": 0, "SoupSequence": 2, "trackingID": 11578719526113, "msgType": "R", "symbol": "A", "marketClass": "N", "fsi": "", "roundLotSize": 100, "roundLotOnly": "N", "issueClass": "C", "issueSubtype": "Z", "authenticity": "P", "shortThreshold": "N", "ipo": "", "luldTier": "1", "etf": "N", "etfFactor": 0, "inverseETF": "N", "compositeId": "BBG000C2V3D6", "schema_name": "SeqDirectoryMessage"}
value :{"SoupPartition": 0, "SoupSequence": 3, "trackingID": 11578719526113, "msgType": "G", "symbol": "A", "securityClass": "N", "adjClosingPrice": 1500300, "schema_name": "SeqAdjClosingPrice"}
value :{"SoupPartition": 0, "SoupSequence": 4, "trackingID": 11578719831656, "msgType": "R", "symbol": "AA", "marketClass": "N", "fsi": "", "roundLotSize": 100, "roundLotOnly": "N", "issueClass": "C", "issueSubtype": "Z", "authenticity": "P", "shortThreshold": "N", "ipo": "", "luldTier": "1", "etf": "N", "etfFactor": 1, "inverseETF": "N", "compositeId": "BBG00B3T3HD3", "schema_name": "SeqDirectoryMessage"}
value :{"SoupPartition": 0, "SoupSequence": 5, "trackingID": 11578719831656, "msgType": "G", "symbol": "AA", "securityClass": "N", "adjClosingPrice": 374400, "schema_name": "SeqAdjClosingPrice"}
value :{"SoupPartition": 0, "SoupSequence": 6, "trackingID": 11578719879872, "msgType": "R", "symbol": "AAA", "marketClass": "P", "fsi": "", "roundLotSize": 100, "roundLotOnly": "N", "issueClass": "Q", "issueSubtype": "I", "authenticity": "P", "shortThreshold": "N", "ipo": "", "luldTier": "2", "etf": "Y", "etfFactor": 1, "inverseETF": "N", "compositeId": "BBG00X5FSP48", "schema_name": "SeqDirectoryMessage"}
value :{"SoupPartition": 0, "SoupSequence": 7, "trackingID": 11578719879872, "msgType": "G", "symbol": "AAA", "securityClass": "P", "adjClosingPrice": 250050, "schema_name": "SeqAdjClosingPrice"}
value :{"SoupPartition": 0, "SoupSequence": 8, "trackingID": 11578719916519, "msgType": "R", "symbol": "AAAU", "marketClass": "P", "fsi": "", "roundLotSize": 100, "roundLotOnly": "N", "issueClass": "Q", "issueSubtype": "I", "authenticity": "P", "shortThreshold": "N", "ipo": "", "luldTier": "1", "etf": "Y", "etfFactor": 1, "inverseETF": "N", "compositeId": "BBG00LPXX872", "schema_name": "SeqDirectoryMessage"}
value :{"SoupPartition": 0, "SoupSequence": 9, "trackingID": 11578719916519, "msgType": "G", "symbol": "AAAU", "securityClass": "P", "adjClosingPrice": 179850, "schema_name": "SeqAdjClosingPrice"}
value :{"SoupPartition": 0, "SoupSequence": 10, "trackingID": 11578719950254, "msgType": "R", "symbol": "AAC", "marketClass": "N", "fsi": "", "roundLotSize": 100, "roundLotOnly": "N", "issueClass": "O", "issueSubtype": "Z", "authenticity": "P", "shortThreshold": "N", "ipo": "", "luldTier": "2", "etf": "N", "etfFactor": 1, "inverseETF": "N", "compositeId": "BBG00YZC2Z91", "schema_name": "SeqDirectoryMessage"}

Example syntax to run the client based on this SDK

  1. To list streams available on Nasdaq Cloud Data Service

python3.9 NCDSSession.py -opt TOPICS

  1. To display the schema for the given topic

python3.9 NCDSSession.py -opt SCHEMA -topic NLSCTA

  1. To dump top n records from the given topic

python3.9 NCDSSession.py -opt TOP -n 10 -topic NLSCTA

  1. To use client based specific authorization file instead of using from the resources of client code base

python3.9 NCDSSession.py -opt TOP -n 10 -topic NLSCTA -authprops client-authentication-config.json

  1. To use the specific kafka properties instead of using the kafka properties from the resources of the client base code

python3.9 NCDSSession.py -opt TOP -n 10 -topic NLSCTA -kafkaprops kafka-config.json

  1. To use the specific client based authorization file and specific kafka properties file

python3.9 NCDSSession.py -opt TOP -n 10 -topic NLSCTA -authprops client-authentication-config.json -kafkaprops kafka-config.json

  1. To display a specific message type

python3.9 NCDSSession.py -opt GETMSG -topic NLSCTA -msgname SeqDirectoryMessage

  1. To dump top n records from the given topic from given timestamp in milliseconds since the UNIX epoch

python3.9 NCDSSession.py -opt TOP -n 10 -topic NLSCTA -timestamp 1590084445610

  1. To retrieve a continuous stream of messages from the given topic

python3.9 NCDSSession.py -opt CONTSTREAM -topic NLSCTA

  1. To retrieve a stream of messages from the given topic, filtered by symbols or message names

python3.9 NCDSSession.py -opt FILTERSTREAM -topic NLSCTA -symbols SPCE

Documentation

An addition to the example application, there is extra documentation at the package and class level, which are located in project https://github.com/Nasdaq/NasdaqCloudDataService-SDK-Python​/tree/master/ncdssdk/docs

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

Code and documentation released under the Apache License, Version 2.0

Comments
  • Getting pip installation errors

    Getting pip installation errors

    I am trying to run the pip install -e . and getting the below error:

    #10 15.37   × python setup.py bdist_wheel did not run successfully.
    #10 15.37   │ exit code: 1
    #10 15.37   ╰─> [45 lines of output]
    #10 15.37       running bdist_wheel
    #10 15.37       running build
    #10 15.37       running build_py
    #10 15.37       creating build
    #10 15.37       creating build/lib.linux-x86_64-3.9
    ...
    #10 15.37       error: command 'gcc' failed: No such file or directory
    #10 15.37       [end of output]
    ...
    #10 15.96   × Running setup.py install for confluent-kafka did not run successfully.
    #10 15.96   │ exit code: 1
    #10 15.96   ╰─> [45 lines of output]
    #10 15.96       running install
    #10 15.96       running build
    #10 15.96       running build_py
    #10 15.96       creating build
    #10 15.96       creating build/lib.linux-x86_64-3.9
    ...
    #10 15.96       error: command 'gcc' failed: No such file or directory
    #10 15.96       [end of output]
    #10 15.96   
    #10 15.96   note: This error originates from a subprocess, and is likely not a problem with pip.
    #10 15.97 error: legacy-install-failure
    #10 15.97 
    #10 15.97 × Encountered error while trying to install package.
    #10 15.97 ╰─> confluent-kafka
    ...
    

    The Python version that I am using is 3.9. NOTE: I am running the source code inside a docker container.

    Can someone please help me with it?

    The steps I have taken to fix the issue but didn't help: I tried installing these pip install wheel setuptools but still, the error exists.

    opened by noorsheikh 1
  • Fix deserialization issue with a bytes field

    Fix deserialization issue with a bytes field

    Remove the serialization of the avro message into a json string. This is unneeded as the deserialize function is allowed to return any object, and it causes issues when there is an avro field of type bytes, as this is not a valid type for json objects.

    opened by ssortman 0
  • Update Jupyter notebook and README

    Update Jupyter notebook and README

    Adds more documentation to the Jupyter notebook as well as a code block to install dependencies. Updates the link to the Java github repo in the README.

    opened by jenniferwang99 0
  • Integration test top-level and util file

    Integration test top-level and util file

    Adds in the top level pytest file containing our integration tests as well as a helper util file for generating and pushing mock messages to topics for testing

    opened by jenniferwang99 0
  • Add documentation for NCDS Python SDK

    Add documentation for NCDS Python SDK

    Adds documentation for the Nasdaq Cloud Data Services Python SDK. Can be viewed by opening docs/build/index.html in your browser.

    Documentation generated with sphinx.

    opened by jenniferwang99 0
  • Adds in config loaders and other helper util files

    Adds in config loaders and other helper util files

    • Implements the authentication config and kafka config loaders
    • Adds in some helper util files: IsItPyTest.py for checking if a pytest is running, Oauth.py for returning the oauth callback, SeekToMidnight.py to help a consumer seek back to a certain timestamp
    opened by jenniferwang99 0
  • Add in NCDSSession file and file structure

    Add in NCDSSession file and file structure

    • creates file structure for the NCDSSession CLI
    • includes two helper util functions for printing help messages and validating command line input
    • adds temp authentication and kafka config files
    opened by jenniferwang99 0
  • Tracking Number Timestamp

    Tracking Number Timestamp

    In the Nasdaq Basic docs, I am seeing that "TrackingNumber/trackingID" for a quote is composed of the Nasdaq internal tracking number and the Timestamp in nanoseconds from midnight. I need to access the unix timestamp of this quote, and wanted to first see if there was a better way to access this than from manipulating the trackingID?

    If not, I would like to confirm that the Timestamp in nanoseconds from midnight is assuming UTC?

    Thanks.

    opened by lsharples1 2
  • Fix invalid notebook

    Fix invalid notebook

    I received the following error when trying to run the notebook:

    Unreadable Notebook: NasdaqCloudDataService-SDK-Python/python_sdk_examples.ipynb NotJSONError('Notebook does not appear to be JSON: \'{\\n "cells": [\\n {\\n "cell_type": "m...')
    

    After adding the missing comma, I was able to run the notebook with no issue

    opened by normand1 0
Releases(0.4.0)
A multipurpose Telegram Bot writen in Python for mirroring files

Deepak Clouds Mirror Deepak Clouds Torrent is a multipurpose Telegram Bot writen in Python for mirroring files on the Internet to our beloved Google D

MR.SHAGGY 0 Dec 19, 2021
Join & Leave spam for aminoapps using aminoboi

JLspam.py Join & Leave spam for https://aminoapps.com using aminoboi Instalação apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 21, 2021
Open Source Discord bot with many cool features like Weather, Balance, Avatar, User, Server, RP-commands, Gif search, YouTube search, VK post search etc.

Сокобот Дискорд бот с открытым исходным кодом. Содержит в себе экономику, полезные команды (!аватар, !юзер, !сервер и тд.), рп-команды (!обнять, !глад

serverok 2 Jan 16, 2022
A simple python discord bot with commands for moderation and utility.

Discord Bot A simple python discord bot with commands for moderation, utility and fun. Moderation $kick user reason - Kick a user from the server

3 Jan 07, 2022
a Disqus alternative

Isso – a commenting server similar to Disqus Isso – Ich schrei sonst – is a lightweight commenting server written in Python and JavaScript. It aims to

Martin Zimmermann 4.7k Jan 02, 2023
Pure Python 3 MTProto API Telegram client library, for bots too!

Telethon ⭐️ Thanks everyone who has starred the project, it means a lot! Telethon is an asyncio Python 3 MTProto library to interact with Telegram's A

LonamiWebs 7.3k Jan 01, 2023
This is to notify you via Discord whenever there is a new beacon.

BeaconNotifier-Discord This is to notify you via Discord whenever there is a new beacon. Make sure you have python3 installed Steps: Create a Discord

26 Dec 28, 2022
A fully decentralized protocol for private transactions FAST snipe BUY token on LUANCH after add LIQUIDITY

TORNADO CASH Pancakeswap Sniper BOT 2022-V1 (MAC WINDOWS ANDROID LINUX) ⭐️ A fully decentralized protocol for private and safe transactions ⭐️ AUTO DO

Crypto Trader 2 Jan 06, 2022
A telegram bot to interact with a Minecraft Server

telegram-mc-bot A telegram bot to interact with a Minecraft Server It has the following commands: /status - Returns the server status (Online/Offline)

KleynArt 1 Dec 09, 2021
Um painel de consultas completo, com metodos atualizados.

Meu pix para eu comprar um café :D "25ef499b-d184-4aa1-9797-0a294be40d83" Painel-de-Consultas Completo. Feito por JOESTAR-TEAM Painel de consultas Com

Dio brando 10 Nov 19, 2021
A repository for 8G server's discord bot

8G Discord-Bot A general-purpose discord bot for the 8G Discord-Server To setup: Create a new file called secrets.py and make it look like this TOKEN=

1 Jan 12, 2022
Telegram-Voice Recoginiton Project (Python)

Telegram-Voice Recoginiton Project (Python) It is a telegram bot that analyses voice messages and convert it to text and reply back response on bot's

Krishnadev P Melevila 1 Jan 28, 2022
Reddit comment bot emulating Telugu actor N. Bala Krishna.

Balayya-Bot Reddit comment bot emulating Telugu actor N. Bala Krishna. Project structure config.py contains Bot's higher level configuration. generate

Kari Lorince 2 Nov 05, 2021
An App to get Ko-Fi payment updates on Telegram.

Deployments. Heroku.com 🚀 Replit.com 🌀 Make sure your app runs 24*7 Zeet.co 💪 Use this :~ Get Bot token from @botfather 🤖 Get ID where you want to

Jainam Oswal 16 Nov 12, 2022
A curated list of awesome Amazon Web Services (AWS) libraries, open source repos, guides, blogs, and other resources.

A curated list of awesome Amazon Web Services (AWS) libraries, open source repos, guides, blogs, and other resources. Featuring the Fiery Meter of AWSome.

Donne Martin 11.1k Jan 04, 2023
Pythonic event-processing library based on decorators

Process Events In Style This library aims to simplify the common pattern of event processing. It simplifies the process of filtering, dispatching and

Nicolas Marier 3 Sep 01, 2022
Whatsapp-APi Wrapper From rzawapi.my.id

Whatsapp-APi Wrapper From rzawapi.my.id

Rezza Priatna 2 Apr 19, 2022
PESU Academy Discord Bot built for PESsants and PESts of PES University

PESU Academy Bot PESU Academy Discord Bot built for PESsants and PESts of PES University You can add the bot to your Discord Server using this link. O

Aditeya Baral 0 Nov 16, 2021
Auto Moderation is a powerfull moderation bot

Auto Moderation.py Auto Moderation a powerful Moderation Discord Bot 🎭 Futures Moderation Auto Moderation 🚀 Installation git clone https://github.co

G∙MAX 2 Apr 02, 2022
The official Pushy SDK for Python apps.

pushy-python The official Pushy SDK for Python apps. Pushy is the most reliable push notification gateway, perfect for real-time, mission-critical app

Pushy 1 Dec 21, 2021