Project 4 Cloud DevOps Nanodegree

Overview

CircleCI

Project Overview

In this project, you will apply the skills you have acquired in this course to operationalize a Machine Learning Microservice API.

You are given a pre-trained, sklearn model that has been trained to predict housing prices in Boston according to several features, such as average rooms in a home and data about highway access, teacher-to-pupil ratios, and so on. You can read more about the data, which was initially taken from Kaggle, on the data source site. This project tests your ability to operationalize a Python flask app—in a provided file, app.py—that serves out predictions (inference) about housing prices through API calls. This project could be extended to any pre-trained machine learning model, such as those for image recognition and data labeling.

Project Tasks

Your project goal is to operationalize this working, machine learning microservice using kubernetes, which is an open-source system for automating the management of containerized applications. In this project you will:

  • Test your project code using linting
  • Complete a Dockerfile to containerize this application
  • Deploy your containerized application using Docker and make a prediction
  • Improve the log statements in the source code for this application
  • Configure Kubernetes and create a Kubernetes cluster
  • Deploy a container using Kubernetes and make a prediction
  • Upload a complete Github repo with CircleCI to indicate that your code has been tested

You can find a detailed project rubric, here.

The final implementation of the project will showcase your abilities to operationalize production microservices.


Setup the Environment

  • Create a virtualenv with Python 3.7 and activate it. Refer to this link for help on specifying the Python version in the virtualenv.
python3 -m pip install --user virtualenv
# You should have Python 3.7 available in your host. 
# Check the Python path using `which python3`
# Use a command similar to this one:
python3 -m virtualenv --python=<path-to-Python3.7> .devops
source .devops/bin/activate
  • Run make install to install the necessary dependencies

Running app.py

  1. Standalone: python app.py
  2. Run in Docker: ./run_docker.sh
  3. Run in Kubernetes: ./run_kubernetes.sh

Kubernetes Steps

  • Setup and Configure Docker locally
  • Setup and Configure Kubernetes locally
  • Create Flask app in Container
  • Run via kubectl Complete the Dockerfile Specify a working directory. Copy the app.py source code to that directory Install any dependencies in requirements.txt (do not delete the commented # hadolint ignore statement). Expose a port when the container is created; port 80 is standard. Specify that the app runs at container launch.

python3 -m venv ~/.devops source ~/.devops/bin/activate $ make lint

Run a Container & Make a Prediction Build the docker image from the Dockerfile; it is recommended that you use an optional --tag parameter as described in the build documentation. List the created docker images (for logging purposes). Run the containerized Flask app; publish the container’s port (80) to a host port (8080). Run the container using the run_docker.sh script created before following the steps above: $ . ./run_docker.sh After running the container we can able to run the prediction using the make_prediction.sh script:

$ . ./make_prediction.sh

Improve Logging & Save Output Add a prediction log statement Run the container and make a prediction to check the logs $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a7d374ad73a6 api "/bin/bash" 36 minutes ago Exited (0) 28 minutes ago exciting_visvesvaraya 89fd55581a44 api "make run-app" 44 minutes ago Exited (2) 44 minutes ago brave_poitras f0b0ece5a9b5 api "make run-app" 46 minutes ago Exited (2) 46 minutes ago elated_brahmagupta a6fcd4749e44 api "make run-app" 48 minutes ago Exited (2) 48 minutes ago dreamy_agnesi

Upload the Docker Image Create a Docker Hub account Built the docker container with this command docker build --tag=<your_tag> . (Don't forget the tag name) Define a dockerpath which is <docker_hub_username>/<project_name> Authenticate and tag image Push your docker image to the dockerpath After complete all steps run the upload using the upload_docker.sh script:

$ . ./upload_docker.sh

Configure Kubernetes to Run Locally Install Kubernetes Install Minikube

Deploy with Kubernetes and Save Output Logs Define a dockerpath which will be “/path”, this should be the same name as your uploaded repository (the same as in upload_docker.sh) Run the docker container with kubectl; you’ll have to specify the container and the port List the kubernetes pods Forward the container port to a host port, using the same ports as before

After complete all steps run the kubernetes using run_kubernetes.sh script:

$ . ./run_kubernetes.sh After running the kubernete make a prediction using the make_prediction.sh script as we do in the second task.

Delete Cluster minikube delete

CircleCI Integration To create the file and folder on GitHub, click the Create new file button on the repo page and type .circleci/config.yml. You should now have in front of you a blank config.yml file in a .circleci folder.

Then you can paste the text from this yaml file into your file, and commit the change to your repository.

It may help to reference this CircleCI blog post on Github integration.

Repository tracking all OpenStack repositories as submodules. Mirror of code maintained at opendev.org.

OpenStack OpenStack is a collection of interoperable components that can be deployed to provide computing, networking and storage resources. Those inf

Mirrors of opendev.org/openstack 4.6k Dec 28, 2022
Find-Xss - Termux Kurulum Dosyası Eklendi Eğer Hata Alıyorsanız Lütfen Resmini Çekip İnstagramdan Bildiriniz

FindXss Waf Bypass Eklendi !!! PRODUCER: Saep UPDATER: Aser-Vant Download: git c

Aser 2 Apr 17, 2022
Visual disk-usage analyser for docker images

whaler What? A command-line tool for visually investigating the disk usage of docker images Why? Large images are slow to move and expensive to store.

Treebeard Technologies 194 Sep 01, 2022
Hw-ci - Hardware CD/CI and Development Container

Hardware CI & Dev Containter These containers were created for my personal hardware development projects and courses duing my undergraduate degree. Pl

Matthew Dwyer 6 Dec 25, 2022
A lobby boy will create a VPS server when you need one, and destroy it after using it.

Lobbyboy What is a lobby boy? A lobby boy is completely invisible, yet always in sight. A lobby boy remembers what people hate. A lobby boy anticipate

226 Dec 29, 2022
Knock your images before these make you painful.

image-knocker Knock your images before these make you painful. Background One day, I had run my deep learning model training program and got off work

Yonghye Kwon 9 Jul 25, 2022
Let's learn how to build, release and operate your containerized applications to Amazon ECS and AWS Fargate using AWS Copilot.

🚀 Welcome to AWS Copilot Workshop In this workshop, you'll learn how to build, release and operate your containerised applications to Amazon ECS and

Donnie Prakoso 15 Jul 14, 2022
Learning and experimenting with Kubernetes

Kubernetes Experiments This repository contains code that I'm using to learn and experiment with Kubernetes. 1. Environment setup minikube kubectl doc

Richard To 10 Dec 02, 2022
A honey token manager and alert system for AWS.

SpaceSiren SpaceSiren is a honey token manager and alert system for AWS. With this fully serverless application, you can create and manage honey token

287 Nov 09, 2022
MicroK8s is a small, fast, single-package Kubernetes for developers, IoT and edge.

MicroK8s The smallest, fastest Kubernetes Single-package fully conformant lightweight Kubernetes that works on 42 flavours of Linux. Perfect for: Deve

Ubuntu 7.1k Jan 08, 2023
DAMPP (gui) is a Python based program to run simple webservers using MySQL, Php, Apache and PhpMyAdmin inside of Docker containers.

DAMPP (gui) is a Python based program to run simple webservers using MySQL, Php, Apache and PhpMyAdmin inside of Docker containers.

Sehan Weerasekara 1 Feb 19, 2022
Tools for writing awesome Fabric files

About fabtools includes useful functions to help you write your Fabric files. fabtools makes it easier to manage system users, packages, databases, et

1.3k Dec 30, 2022
A simple python application for running a CI pipeline locally This app currently supports GitLab CI scripts

🏃 Simple Local CI Runner 🏃 A simple python application for running a CI pipeline locally This app currently supports GitLab CI scripts ⚙️ Setup Inst

Tom Stowe 0 Jan 11, 2022
A colony of interacting processes

NColony Infrastructure for running "colonies" of processes. Hacking $ tox Should DTRT -- if it passes, it means unit tests are passing, and 100% cover

23 Apr 04, 2022
Lima is an alternative to using Docker Desktop on your Mac.

lima-xbar-plugin Table of Contents Description Installation Dependencies Lima is an alternative to using Docker Desktop on your Mac. Description This

Joe Block 68 Dec 22, 2022
Prometheus exporter for AWS Simple Queue Service (SQS)

Prometheus SQS Exporter Prometheus exporter for AWS Simple Queue Service (SQS) Metrics Metric Description ApproximateNumberOfMessages Returns the appr

Gabriel M. Dutra 0 Jan 31, 2022
Checkmk kube agent - Checkmk Kubernetes Cluster and Node Collectors

Checkmk Kubernetes Cluster and Node Collectors Checkmk cluster and node collecto

tribe29 GmbH 15 Dec 26, 2022
Manage your SSH like a boss.

--- storm is a command line tool to manage your ssh connections. features adding, editing, deleting, listing, searching across your SSHConfig. command

Emre Yılmaz 3.9k Jan 03, 2023
Cobbler is a versatile Linux deployment server

Cobbler Cobbler is a Linux installation server that allows for rapid setup of network installation environments. It glues together and automates many

Cobbler 2.4k Dec 24, 2022
Glances an Eye on your system. A top/htop alternative for GNU/Linux, BSD, Mac OS and Windows operating systems.

Glances - An eye on your system Summary Glances is a cross-platform monitoring tool which aims to present a large amount of monitoring information thr

Nicolas Hennion 22k Jan 08, 2023