General Vision Benchmark, a project from OpenGVLab

Overview

Introduction

  • We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model evaluation.
  • It is recommended to evaluate with low-data regime, using only 10% training data.
  • The parameters of model backbone will be frozen during training, as known as 'linear probe'.
  • Face Detection and Depth Estimation is not provided for now, you may evaluate via official repo if needed.
  • Specifically, we use central_model.py in our repo to represent the implementation of Up-G models.

Task Supported

  • Object Classification
  • Object Detection (VOC Detection)
  • Pedestrian Detection (CityPersons Detection)
  • Semantic Segmentation (VOC Segmentation)
  • Face Detection (WiderFace Detection)
  • Depth Estimation (Kitti/NYU-v2 Depth Estimation)

Installation

Requirements

Install Dependencies

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

b. Install PyTorch and torchvision following the official instructions, e.g.:

conda install pytorch torchvision -c pytorch
Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the
[PyTorch website](https://pytorch.org/).

c. Install openmm package via pip (mmcls, mmdet, mmseg):

pip install mmcls
pip install mmdet
pip install mmsegmetation

Usage

This section provide basic tutorials about the usage of GV-B.

Prepare datasets

For each evaluation task, you can follow the official repo tutorial for data preparation.

mmclassification

mmdetection

mmsegmentation

Model evaluation

We use MIM to submit evaluation in GV-B.

a.If you run MMClassification on a cluster managed with slurm, you can use the script mim_slurm_train.sh. (This script also supports single machine training.)

sh tools/mim_slurm_train.sh $PARTITION $TASK $CONFIG $WORK_DIR

b.If you run on w/o slurm. (More details can be found in docs of openmim)

PYTHONPATH='.':$PYTHONPATH mim train $TASK $CONFIG $WORK_DIR
  • PARTITION: The partition you are using
  • WORK_DIR: The directory to save logs and checkpoints
  • CONFIG: Config files corresponding to tasks.

Detailed Tutorials

Currently, we provide tutorials for users.

Benchmark(with Hyperparameter searching)

CLS DET SEG DEP
10% data Cifar10 Cifar100 Food Pets Flowers Sun Cars Dtd Caltech Aircraft Svhn Eurosat Resisc45 Retinopathy Fer2013 Ucf101 Gtsrb Pcam Imagenet Kinetics700 VOC07+12 WIDER FACE CityPersons VOC2012 KITTI NYUv2
Up-A R50 92.4 73.5 75.8 85.7 94.6 57.9 52.7 65.0 88.5 28.7 61.4 93.8 82.9 73.8 55.0 71.1 75.1 82.9 71.9 35.2 76.3 90.3/88.3/70.7 24.6/59.0 62.54 3.181 0.456
MN-B4 96.1 82.9 84.3 89.8 98.3 66.0 61.4 66.8 92.8 32.5 60.4 92.7 85.8 75.6 56.5 76.9 74.4 84.3 77.2 39.4 74.9 89.3/87.6/71.4 26.5/61.8 65.71 3.565 0.482
MN-B15 98.2 87.8 93.9 92.8 99.6 72.3 59.4 70.0 93.8 64.8 58.6 95.3 91.9 77.9 62.8 85.4 76.2 87.8 86.0 52.9 78.4 93.6/91.8/77.2 17.7/49.5 60.68 2.423 0.383
Up-E C-R50 91.9 71.2 80.7 88.8 94.0 57.4 67.9 62.7 85.5 73.9 57.6 93.7 83.6 75.4 54.1 69.6 73.9 85.7 72.5 34.6 72.2 89.7/87.6/68.1 22.4/58.3 57.66 3.214 0.501
D-R50 86.4 57.3 53.9 31.4 44.0 39.8 8.6 44.6 72.5 15.8 64.2 89.1 72.8 73.6 46.6 57.4 67.5 81.7 45.0 25.2 87.7 93.8/92.0/75.5 15.8/41.5 62.3 3.09 0.45
S-R50 78.3 46.6 45.1 24.2 33.9 38.0 5.0 41.4 50.2 8.5 51.5 89.9 76.4 74.0 44.8 42.0 64.0 80.8 34.9 19.7 75.0 87.4/85.7/66.4 19.6/53.3 71.9 3.12 0.45
C-MN-B4 96.7 83.2 89.2 91.9 98.2 66.7 67.7 66.3 91.9 77.2 57.8 94.4 88.0 77.0 56.6 78.5 77.3 85.6 80.5 44.2 73.7 89.6/88.0/71.1 30.3/65.0 65.8 3.54 0.46
D-MN-B4 91.5 67.0 61.4 44.4 57.2 41.8 12.1 41.2 80.6 25.1 68.0 90.7 74.6 74.3 50.3 61.7 74.2 81.9 57.0 29.3 89.3 94.6/92.6/76.5 14.0/43.8 73.1 3.05 0.40
S-MN-B4 83.5 57.2 68.3 70.8 85.8 52.9 25.9 52.8 81.6 17.7 56.1 91.3 83.6 74.5 49.0 55.2 68.0 84.3 61.0 27.4 78.7 89.5/87.9/71.4 19.4/53.0 79.6 3.06 0.41
C-MN-B-15 98.7 90.1 94.7 95.1 99.7 75.7 74.9 73.6 94.4 91.8 66.7 96.2 92.8 77.6 62.3 87.7 83.3 87.5 87.2 54.7 80.4 93.2/91.4/75.7 29.5/59.9 70.6 2.63 0.37
D-MN-B-15 92.2 67.9 69.0 33.9 59.5 45.4 13.8 46.3 82.0 26.6 65.4 90.1 79.1 76.0 53.2 63.7 74.4 83.3 62.2 33.7 89.4 95.8/94.4/80.1 10.5/42.4 77.2 2.72 0.37
Up-G R50 92.9 73.7 81.1 88.9 94.0 58.6 68.6 63.0 86.1 74.0 57.9 94.4 84.0 75.7 54.3 70.8 74.3 85.9 72.6 34.8 87.7 93.9/92.2/77.0 14.7/46.0 66.19 2.835 0.39
MN-B4 96.7 83.9 89.2 92.1 98.2 66.7 67.7 66.5 91.9 77.2 57.8 94.4 88.0 77.0 57.1 79 77.7 86 80.5 44.2 89.1 94.9/92.8/76.5 12.0/50.5 71.4 2.94 0.40
MN-B15 98.7 90.4 94.5 95.4 99.7 74.4 75.4 74.2 94.5 91.8 66.7 96.3 92.7 77.9 63.1 88 83.6 88 87.1 54.7 89.8 95.9/94.2/79.6 10.5/41.3 77.3 2.71 0.37
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022