This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Overview

Interpretable Machine Learning with Python

Interpretable Machine Learning with Pythone

This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Learn to build interpretable high-performance models with hands-on real-world examples

What is this book about?

Do you want to understand your models and mitigate the risks associated with poor predictions using practical machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you overcome these challenges, using interpretation methods to build fairer and safer ML models.

This book covers the following exciting features:

  • Recognize the importance of interpretability in business
  • Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes
  • Become well-versed in interpreting models with model-agnostic methods
  • Visualize how an image classifier works and what it learns
  • Understand how to mitigate the influence of bias in datasets

If you feel this book is for you, get your copy today!

https://www.packtpub.com/

Instructions and Navigations

All of the code is organized into folders. For example, Chapter02.

The code will look like the following:

base_classifier = KerasClassifier(model=base_model,\
                                  clip_values=(min_, max_))
y_test_mdsample_prob = np.max(y_test_prob[sampl_md_idxs],\
                                                       axis=1)
y_test_smsample_prob = np.max(y_test_prob[sampl_sm_idxs],\
                                                       axis=1)

Following is what you need for this book: This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.

With the following software and hardware list you can run all code files present in the book (Chapter 1-14).

Software and Hardware List

You can install the software required in any operating system by first installing Jupyter Notebook or Jupyter Lab with the most recent version of Python, or install Anaconda which can install everything at once. While hardware requirements for Jupyter are relatively modest, we recommend a machine with at least 4 cores of 2Ghz and 8Gb of RAM.

Alternatively, to installing the software locally, you can run the code in the cloud using Google Colab or another cloud notebook service.

Either way, the following packages are required to run the code in all the chapters (Google Colab has all the packages denoted with a ^):

Chapter Software required OS required
1 - 13 ^ Python 3.6+ Windows, Mac OS X, and Linux (Any)
1 - 13 ^ matplotlib 3.2.2+ Windows, Mac OS X, and Linux (Any)
1 - 13 ^ scikit-learn 0.22.2+ Windows, Mac OS X, and Linux (Any)
1 - 12 ^ pandas 1.1.5+ Windows, Mac OS X, and Linux (Any)
2 - 13 machine-learning-datasets 0.01.16+ Windows, Mac OS X, and Linux (Any)
2 - 13 ^ numpy 1.19.5+ Windows, Mac OS X, and Linux (Any)
3 - 13 ^ seaborn 0.11.1+ Windows, Mac OS X, and Linux (Any)
3 - 13 ^ tensorflow 2.4.1+ Windows, Mac OS X, and Linux (Any)
5 - 12 shap 0.38.1+ Windows, Mac OS X, and Linux (Any)
1, 5, 10, 12 ^ scipy 1.4.1+ Windows, Mac OS X, and Linux (Any)
5, 10-12 ^ xgboost 0.90+ Windows, Mac OS X, and Linux (Any)
6, 11, 12 ^ lightgbm 2.2.3+ Windows, Mac OS X, and Linux (Any)
7 - 9 alibi 0.5.5+ Windows, Mac OS X, and Linux (Any)
10 - 13 ^ tqdm 4.41.1+ Windows, Mac OS X, and Linux (Any)
2, 9 ^ statsmodels 0.10.2+ Windows, Mac OS X, and Linux (Any)
3, 5 rulefit 0.3.1+ Windows, Mac OS X, and Linux (Any)
6, 8 lime 0.2.0.1+ Windows, Mac OS X, and Linux (Any)
7, 12 catboost 0.24.4+ Windows, Mac OS X, and Linux (Any)
8, 9 ^ Keras 2.4.3+ Windows, Mac OS X, and Linux (Any)
11, 12 ^ pydot 1.3.0+ Windows, Mac OS X, and Linux (Any)
11, 12 xai 0.0.4+ Windows, Mac OS X, and Linux (Any)
1 ^ beautifulsoup4 4.6.3+ Windows, Mac OS X, and Linux (Any)
1 ^ requests 2.23.0+ Windows, Mac OS X, and Linux (Any)
3 cvae 0.0.3+ Windows, Mac OS X, and Linux (Any)
3 interpret 0.2.2+ Windows, Mac OS X, and Linux (Any)
3 ^ six 1.15.0+ Windows, Mac OS X, and Linux (Any)
3 skope-rules 1.0.1+ Windows, Mac OS X, and Linux (Any)
4 PDPbox 0.2.0+ Windows, Mac OS X, and Linux (Any)
4 pycebox 0.0.1+ Windows, Mac OS X, and Linux (Any)
5 alepython 0.1+ Windows, Mac OS X, and Linux (Any)
5 tensorflow-docs 0.0.02+ Windows, Mac OS X, and Linux (Any)
6 ^ nltk 3.2.5+ Windows, Mac OS X, and Linux (Any)
7 witwidget 1.7.0+ Windows, Mac OS X, and Linux (Any)
8 ^ opencv-python 4.1.2.30+ Windows, Mac OS X, and Linux (Any)
8 ^ scikit-image 0.16.2+ Windows, Mac OS X, and Linux (Any)
8 tf-explain 0.2.1+ Windows, Mac OS X, and Linux (Any)
8 tf-keras-vis 0.5.5+ Windows, Mac OS X, and Linux (Any)
9 SALib 1.3.12+ Windows, Mac OS X, and Linux (Any)
9 distython 0.0.3+ Windows, Mac OS X, and Linux (Any)
10 ^ mlxtend 0.14.0+ Windows, Mac OS X, and Linux (Any)
10 sklearn-genetic 0.3.0+ Windows, Mac OS X, and Linux (Any)
11 aif360==0.3.0 Windows, Mac OS X, and Linux (Any)
11 BlackBoxAuditing==0.1.54 Windows, Mac OS X, and Linux (Any)
11 dowhy 0.5.1+ Windows, Mac OS X, and Linux (Any)
11 econml 0.9.0+ Windows, Mac OS X, and Linux (Any)
11 ^ networkx 2.5+ Windows, Mac OS X, and Linux (Any)
12 bayesian-optimization 1.2.0+ Windows, Mac OS X, and Linux (Any)
12 ^ graphviz 0.10.1+ Windows, Mac OS X, and Linux (Any)
12 tensorflow-lattice 2.0.7+ Windows, Mac OS X, and Linux (Any)
13 adversarial-robustness-toolbox 1.5.0+ Windows, Mac OS X, and Linux (Any)

NOTE: the library machine-learning-datasets is the official name of what in the book is referred to as mldatasets. Due to naming conflicts, it had to be changed.

The exact versions of each library, as tested, can be found in the requirements.txt file and installed like this should you have a dedicated environment for them:

> pip install -r requirements.txt

You might get some conflicts specifically with libraries cvae, alepython, pdpbox and xai. If this is the case, try:

> pip install --no-deps -r requirements.txt

Alternatively, you can install libraries one chapter at a time inside of a local Jupyter environment using cells with !pip install or run all the code in Google Colab with the following links:

Remember to make sure you click on the menu item "File > Save a copy in Drive" as soon you open each link to ensure that your notebook is saved as you run it. Also, notebooks denoted with plus sign (+) are relatively compute-intensive, and will take an extremely long time to run on Google Colab but if you must go to "Runtime > Change runtime type" and select "High-RAM" for runtime shape. Otherwise, a better cloud enviornment or local environment is preferable.

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. Click here to download it.

Summary

The book does much more than explain technical topics, but here's a summary of the chapters:

Chapters topics

Related products

Get to Know the Authors

Serg Masís has been at the confluence of the internet, application development, and analytics for the last two decades. Currently, he's a Climate and Agronomic Data Scientist at Syngenta, a leading agribusiness company with a mission to improve global food security. Before that role, he co-founded a startup, incubated by Harvard Innovation Labs, that combined the power of cloud computing and machine learning with principles in decision-making science to expose users to new places and events. Whether it pertains to leisure activities, plant diseases, or customer lifetime value, Serg is passionate about providing the often-missing link between data and decision-making — and machine learning interpretation helps bridge this gap more robustly.

Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022