This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Overview

Interpretable Machine Learning with Python

Interpretable Machine Learning with Pythone

This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Learn to build interpretable high-performance models with hands-on real-world examples

What is this book about?

Do you want to understand your models and mitigate the risks associated with poor predictions using practical machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you overcome these challenges, using interpretation methods to build fairer and safer ML models.

This book covers the following exciting features:

  • Recognize the importance of interpretability in business
  • Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes
  • Become well-versed in interpreting models with model-agnostic methods
  • Visualize how an image classifier works and what it learns
  • Understand how to mitigate the influence of bias in datasets

If you feel this book is for you, get your copy today!

https://www.packtpub.com/

Instructions and Navigations

All of the code is organized into folders. For example, Chapter02.

The code will look like the following:

base_classifier = KerasClassifier(model=base_model,\
                                  clip_values=(min_, max_))
y_test_mdsample_prob = np.max(y_test_prob[sampl_md_idxs],\
                                                       axis=1)
y_test_smsample_prob = np.max(y_test_prob[sampl_sm_idxs],\
                                                       axis=1)

Following is what you need for this book: This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.

With the following software and hardware list you can run all code files present in the book (Chapter 1-14).

Software and Hardware List

You can install the software required in any operating system by first installing Jupyter Notebook or Jupyter Lab with the most recent version of Python, or install Anaconda which can install everything at once. While hardware requirements for Jupyter are relatively modest, we recommend a machine with at least 4 cores of 2Ghz and 8Gb of RAM.

Alternatively, to installing the software locally, you can run the code in the cloud using Google Colab or another cloud notebook service.

Either way, the following packages are required to run the code in all the chapters (Google Colab has all the packages denoted with a ^):

Chapter Software required OS required
1 - 13 ^ Python 3.6+ Windows, Mac OS X, and Linux (Any)
1 - 13 ^ matplotlib 3.2.2+ Windows, Mac OS X, and Linux (Any)
1 - 13 ^ scikit-learn 0.22.2+ Windows, Mac OS X, and Linux (Any)
1 - 12 ^ pandas 1.1.5+ Windows, Mac OS X, and Linux (Any)
2 - 13 machine-learning-datasets 0.01.16+ Windows, Mac OS X, and Linux (Any)
2 - 13 ^ numpy 1.19.5+ Windows, Mac OS X, and Linux (Any)
3 - 13 ^ seaborn 0.11.1+ Windows, Mac OS X, and Linux (Any)
3 - 13 ^ tensorflow 2.4.1+ Windows, Mac OS X, and Linux (Any)
5 - 12 shap 0.38.1+ Windows, Mac OS X, and Linux (Any)
1, 5, 10, 12 ^ scipy 1.4.1+ Windows, Mac OS X, and Linux (Any)
5, 10-12 ^ xgboost 0.90+ Windows, Mac OS X, and Linux (Any)
6, 11, 12 ^ lightgbm 2.2.3+ Windows, Mac OS X, and Linux (Any)
7 - 9 alibi 0.5.5+ Windows, Mac OS X, and Linux (Any)
10 - 13 ^ tqdm 4.41.1+ Windows, Mac OS X, and Linux (Any)
2, 9 ^ statsmodels 0.10.2+ Windows, Mac OS X, and Linux (Any)
3, 5 rulefit 0.3.1+ Windows, Mac OS X, and Linux (Any)
6, 8 lime 0.2.0.1+ Windows, Mac OS X, and Linux (Any)
7, 12 catboost 0.24.4+ Windows, Mac OS X, and Linux (Any)
8, 9 ^ Keras 2.4.3+ Windows, Mac OS X, and Linux (Any)
11, 12 ^ pydot 1.3.0+ Windows, Mac OS X, and Linux (Any)
11, 12 xai 0.0.4+ Windows, Mac OS X, and Linux (Any)
1 ^ beautifulsoup4 4.6.3+ Windows, Mac OS X, and Linux (Any)
1 ^ requests 2.23.0+ Windows, Mac OS X, and Linux (Any)
3 cvae 0.0.3+ Windows, Mac OS X, and Linux (Any)
3 interpret 0.2.2+ Windows, Mac OS X, and Linux (Any)
3 ^ six 1.15.0+ Windows, Mac OS X, and Linux (Any)
3 skope-rules 1.0.1+ Windows, Mac OS X, and Linux (Any)
4 PDPbox 0.2.0+ Windows, Mac OS X, and Linux (Any)
4 pycebox 0.0.1+ Windows, Mac OS X, and Linux (Any)
5 alepython 0.1+ Windows, Mac OS X, and Linux (Any)
5 tensorflow-docs 0.0.02+ Windows, Mac OS X, and Linux (Any)
6 ^ nltk 3.2.5+ Windows, Mac OS X, and Linux (Any)
7 witwidget 1.7.0+ Windows, Mac OS X, and Linux (Any)
8 ^ opencv-python 4.1.2.30+ Windows, Mac OS X, and Linux (Any)
8 ^ scikit-image 0.16.2+ Windows, Mac OS X, and Linux (Any)
8 tf-explain 0.2.1+ Windows, Mac OS X, and Linux (Any)
8 tf-keras-vis 0.5.5+ Windows, Mac OS X, and Linux (Any)
9 SALib 1.3.12+ Windows, Mac OS X, and Linux (Any)
9 distython 0.0.3+ Windows, Mac OS X, and Linux (Any)
10 ^ mlxtend 0.14.0+ Windows, Mac OS X, and Linux (Any)
10 sklearn-genetic 0.3.0+ Windows, Mac OS X, and Linux (Any)
11 aif360==0.3.0 Windows, Mac OS X, and Linux (Any)
11 BlackBoxAuditing==0.1.54 Windows, Mac OS X, and Linux (Any)
11 dowhy 0.5.1+ Windows, Mac OS X, and Linux (Any)
11 econml 0.9.0+ Windows, Mac OS X, and Linux (Any)
11 ^ networkx 2.5+ Windows, Mac OS X, and Linux (Any)
12 bayesian-optimization 1.2.0+ Windows, Mac OS X, and Linux (Any)
12 ^ graphviz 0.10.1+ Windows, Mac OS X, and Linux (Any)
12 tensorflow-lattice 2.0.7+ Windows, Mac OS X, and Linux (Any)
13 adversarial-robustness-toolbox 1.5.0+ Windows, Mac OS X, and Linux (Any)

NOTE: the library machine-learning-datasets is the official name of what in the book is referred to as mldatasets. Due to naming conflicts, it had to be changed.

The exact versions of each library, as tested, can be found in the requirements.txt file and installed like this should you have a dedicated environment for them:

> pip install -r requirements.txt

You might get some conflicts specifically with libraries cvae, alepython, pdpbox and xai. If this is the case, try:

> pip install --no-deps -r requirements.txt

Alternatively, you can install libraries one chapter at a time inside of a local Jupyter environment using cells with !pip install or run all the code in Google Colab with the following links:

Remember to make sure you click on the menu item "File > Save a copy in Drive" as soon you open each link to ensure that your notebook is saved as you run it. Also, notebooks denoted with plus sign (+) are relatively compute-intensive, and will take an extremely long time to run on Google Colab but if you must go to "Runtime > Change runtime type" and select "High-RAM" for runtime shape. Otherwise, a better cloud enviornment or local environment is preferable.

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. Click here to download it.

Summary

The book does much more than explain technical topics, but here's a summary of the chapters:

Chapters topics

Related products

Get to Know the Authors

Serg Masís has been at the confluence of the internet, application development, and analytics for the last two decades. Currently, he's a Climate and Agronomic Data Scientist at Syngenta, a leading agribusiness company with a mission to improve global food security. Before that role, he co-founded a startup, incubated by Harvard Innovation Labs, that combined the power of cloud computing and machine learning with principles in decision-making science to expose users to new places and events. Whether it pertains to leisure activities, plant diseases, or customer lifetime value, Serg is passionate about providing the often-missing link between data and decision-making — and machine learning interpretation helps bridge this gap more robustly.

Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Microsoft 5.6k Jan 07, 2023
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022