novel deep learning research works with PaddlePaddle

Overview

Research

发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。

目录

计算机视觉

任务类型 目录 简介 论文链接
图像检索 GNN-Re-Ranking 基于GNN的快速图像检索Re-Ranking。 https://arxiv.org/abs/2012.07620v2
车流统计 VehicleCounting AICITY2020 车流统计竞赛datasetA TOP1 方案。 -
车辆再识别 PaddleReid 给定目标车辆,在检索库中检索同id车辆,支持多种特征子网络。 -
车辆异常检测 AICity2020-Anomaly-Detection 在监控视频中检测车辆异常情况,例如车辆碰撞、失速等。 -
医学图像分析 AGEchallenge 任务:在AS-OCT图像的公共数据集上进行闭角型分类和巩膜突点定位;基线模型:对应以上各任务的基线模型。 -
光流估计 PWCNet 基于金字塔式处理,逐层学习细部光流,设计代价容量函数三原则的CNN模型,用于光流估计。 https://arxiv.org/abs/1709.02371
语义分割 SemSegPaddle 针对多个数据集的图像语义分割模型的实现,包括Cityscapes、Pascal Context和ADE20K。 -
轻量化检测 astar2019 百度之星轻量化检测比赛评测工具。 -
地标检索与识别 landmark 基于检索的地标检索与识别系统,支持地标型与非地标型识别、识别与检索结果相结合的多重识别结果投票和重新排序。 https://arxiv.org/abs/1906.03990
图像分类 webvision2018 模型利用重加权网络(URNet)缓解web数据中偏倚和噪声的影响,进行web图像分类。 https://arxiv.org/abs/1811.00700
图像分类 CLPI 模型利用一个Lesion Generator改善了糖尿病视网膜病变图像分级的模型性能,理论上可用于所有希望实现局部+整体模型分析的场景 -
小样本学习 PaddleFSL 小样本学习工具包,可复现多个常用基线方法在多个图片分类数据集上的汇报效果 -

自然语言处理

任务类型 目录 简介 论文链接
中文词法分析 LAC(Lexical Analysis of Chinese) 百度自主研发中文特色模型词法分析任务,集成了中文分词、词性标注和命名实体识别任务。输入是一个字符串,而输出是句子中的词边界和词性、实体类别。 -
主动对话 DuConv 机器根据给定知识信息主动引领对话进程完成设定的对话目标。 https://www.aclweb.org/anthology/P19-1369/
语义解析 Text2SQL-BASELINE 输入自然语言问题和相应的数据库,生成与问题对应的 SQL 查询语句,通过执行该 SQL 可得到问题的答案。 -
多轮对话 DAM 开放领域多轮对话匹配的深度注意力机制模型,根据多轮对话历史和候选回复内容,排序出最合适的回复。 http://aclweb.org/anthology/P18-1103
阅读理解 DuReader 数据集:大规模、面向真实应用、由人类生成的中文阅读理解数据集,聚焦于真实世界中的不限定领域的问答任务;基线系统:针对DuReader数据集实现的经典BiDAF模型。 https://www.aclweb.org/anthology/W18-2605/
关系抽取 ARNOR 数据集:用于对远程监督关系提取模型进行句子级别的评价;模型:基于注意力正则化识别噪声数据,通过bootstrap方法逐步选择出高质量的标注数据。 https://www.aclweb.org/anthology/P19-1135/
机器翻译 JEMT 模型的输入端包括文字信息及发音信息,嵌入层融合文字信息和发音信息进行翻译。 https://arxiv.org/abs/1810.06729
阅读理解 KTNET 模型将知识库中的知识整合到预先训练好的上下文表示中,利用丰富的知识增强机器阅读理解的预训练语言表示。 https://www.aclweb.org/anthology/P19-1226
对话生成 PLATO 基于隐空间的端到端的预训练对话生成模型,可以灵活支持多种对话,包括闲聊、知识聊天、对话问答等。 http://arxiv.org/abs/1910.07931
阅读理解 DuReader-Robust-BASELINE 数据集:DuReader-robust,中文数据集,用于全面评价机器阅读理解模型的鲁棒性;基线系统:针对该数据集,基于ERNIE实现的阅读理解基线系统。 https://arxiv.org/abs/2004.11142
对话生成 AKGCM 包含知识增强图、知识选择和知识感知响应生成器的聊天机器人。 https://www.aclweb.org/anthology/D19-1187/
机器翻译 MAL 多智能体端到端联合学习框架,通过多个智能体的互相学习提升翻译质量。 https://arxiv.org/abs/1909.01101
对话生成 MMPMS 针对开放域对话中一对多问题,利用多映射机制和后验映射选择模块进行多样性、丰富化的对话生成。 https://arxiv.org/abs/1906.01781
阅读理解 MRQA2019-BASELINE 机器阅读理解任务的基线模型,基于ERNIE预训练模型,支持多GPU微调预测。 -
阅读理解 D-NET 预训练及微调框架,包含多任务学习及多预训练模型的融合,用于阅读理解模型的生成。 https://www.aclweb.org/anthology/D19-5828/
建议挖掘 MPM 利用多视角架构来学习表示和双向transformer编码器进行论坛评论建议挖掘。 https://www.aclweb.org/anthology/S19-2216/
多文档摘要 ACL2020-GraphSum 基于图表示的生成式多文档摘要模型,将显式图结构信息引入到端到端摘要生成过程中。 https://www.aclweb.org/anthology/2020.acl-main.555.pdf
融合多种对话类型的对话式推荐 ACL2020-DuRecDial 提出新任务:融合闲聊、任务型对话、问答和推荐等多种对话类型的对话式推荐,构建DuRecDial数据集,提出具有多对话目标驱动策略机制的对话生成框架。 https://www.aclweb.org/anthology/2020.acl-main.98/
面向推荐的对话 Conversational-Recommendation-BASELINE 融合人机对话系统和个性化推荐系统,定义新一代智能推荐技术,该系统先通过问答或闲聊收集用户兴趣和偏好,然后主动给用户推荐其感兴趣的内容,比如餐厅、美食、电影、新闻等。 -
稠密段落检索 ACL2021-PAIR 基于以段落相似度为中心的相似度关系提升稠密段落检索,基于知识蒸馏进行采样,采用两阶段训练方式。 https://aclanthology.org/2021.findings-acl.191/

知识图谱

任务类型 目录 简介 论文链接
知识图谱表示学习 CoKE 百度自主研发语境化知识图谱表示学习框架CoKE,在知识图谱链接预测和多步查询任务上取得学界领先效果。 https://arxiv.org/abs/1911.02168
关系抽取 DuIE_Baseline 语言与智能技术竞赛关系抽取任务DuIE 2.0基线系统,通过设计结构化标注体系,实现基于ERNIE的端到端SPO抽取模型。 -
事件抽取 DuEE_baseline 语言与智能技术竞赛事件抽取任务DuEE 1.0基线系统,实现基于ERNIE+CRF的Pipeline事件抽取模型。 -
实体链指 DuEL_Baseline 面向中文短文本的实体链指任务(CCKS 2020)的基线系统,实现基于ERNIE和多任务机制的实体链指模型。 -
辅助诊断 SignOrSymptom_Relationship 针对EMR具有无结构化文本和结构化信息并存的特点,结合医疗NLU,以深度学习模型实现EMR的向量化表示、诊断预分类和概率计算。 -
文档级关系抽取 SSAN 引入并建模实体间的依赖结构,在文档级关系抽取任务上取得学界领先效果。 https://arxiv.org/abs/2102.10249

时空数据挖掘

任务类型 目录 简介 论文链接
固定资产价值估计 MONOPOLY 实用的POI商业智能算法,对大量其他的固定资产进行价值估计,包括城市居民对不同公共资产价格评估、私有房价评估偏好的发现与量化分析,以及对评估固定资产价格需考虑的空间范围的确定。 https://dl.acm.org/doi/10.1145/3357384.3357810
兴趣点生成 P3AC 具备个性化的前缀嵌入的POI自动生成。 -
区域生成 P3AC 基于路网进行区域划分的方法, 实现对特定区域基于路网的全划分,区域之间无交叠,无空隙,算法支持对全球的区域划分。 -

许可证书

此向导由PaddlePaddle贡献,受Apache-2.0 license许可认证。

Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022