Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Overview

Spanish Language Models 💃🏻

Corpora 📃

Corpora Number of documents Size (GB)
BNE 201,080,084 570GB

Models 🤖

Word embeddings 🔤

Word embeddings trained with FastText for 300d:

Evaluation

Dataset Metric RoBERTa-b RoBERTa-l BETO mBERT BERTIN
UD-POS F1 0.9907 0.9901 0.9900 0.9886 0.9904
Conll-NER F1 0.8851 0.8772 0.8759 0.8691 0.8627
Capitel-POS F1 0.9846 0.9851 0.9836 0.9839 0.9826
Capitel-NER F1 0.8959 0.8998 0.8771 0.8810 0.8741
STS Combined 0.8423 0.8420 0.8216 0.8249 0.7822
MLDoc Accuracy 0.9595 0.9600 0.9650 0.9560 0.9673
PAWS-X F1 0.9035 0.9000 0.8915 0.9020 0.8820
XNLI Accuracy 0.8016 WiP 0.8130 0.7876 WiP

Usage example ⚗️

For the RoBERTa-base

from transformers import AutoModelForMaskedLM
from transformers import AutoTokenizer, FillMaskPipeline
from pprint import pprint
tokenizer_hf = AutoTokenizer.from_pretrained('BSC-TeMU/roberta-base-bne')
model = AutoModelForMaskedLM.from_pretrained('BSC-TeMU/roberta-base-bne')
model.eval()
pipeline = FillMaskPipeline(model, tokenizer_hf)
text = f"¡Hola <mask>!"
res_hf = pipeline(text)
pprint([r['token_str'] for r in res_hf])

For the RoBERTa-large

from transformers import AutoModelForMaskedLM
from transformers import AutoTokenizer, FillMaskPipeline
from pprint import pprint
tokenizer_hf = AutoTokenizer.from_pretrained('BSC-TeMU/roberta-large-bne')
model = AutoModelForMaskedLM.from_pretrained('BSC-TeMU/roberta-large-bne')
model.eval()
pipeline = FillMaskPipeline(model, tokenizer_hf)
text = f"¡Hola <mask>!"
res_hf = pipeline(text)
pprint([r['token_str'] for r in res_hf])

Other Spanish Language Models 👩‍👧‍👦

We are developing domain-specific language models:

Cite 📣

@misc{gutierrezfandino2021spanish,
      title={Spanish Language Models}, 
      author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas},
      year={2021},
      eprint={2107.07253},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contact 📧

📋 We are interested in (1) extending our corpora to make larger models (2) train/evaluate the model in other tasks.

For questions regarding this work, contact Asier Gutiérrez-Fandiño ([email protected])

Owner
PlanTL-SANIDAD
PlanTL-SANIDAD
Mirco Ravanelli 2.3k Dec 27, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Eliyar Eziz 2.3k Dec 29, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022