Imutils - A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

Overview

imutils

A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and both Python 2.7 and Python 3.

For more information, along with a detailed code review check out the following posts on the PyImageSearch.com blog:

Installation

Provided you already have NumPy, SciPy, Matplotlib, and OpenCV already installed, the imutils package is completely pip-installable:

$ pip install imutils

Finding function OpenCV functions by name

OpenCV can be a big, hard to navigate library, especially if you are just getting started learning computer vision and image processing. The find_function method allows you to quickly search function names across modules (and optionally sub-modules) to find the function you are looking for.

Example:

Let's find all function names that contain the text contour:

import imutils
imutils.find_function("contour")

Output:

1. contourArea
2. drawContours
3. findContours
4. isContourConvex

The contourArea function could therefore be accessed via: cv2.contourArea

Translation

Translation is the shifting of an image in either the x or y direction. To translate an image in OpenCV you would need to supply the (x, y)-shift, denoted as (tx, ty) to construct the translation matrix M:

Translation equation

And from there, you would need to apply the cv2.warpAffine function.

Instead of manually constructing the translation matrix M and calling cv2.warpAffine, you can simply make a call to the translate function of imutils.

Example:

# translate the image x=25 pixels to the right and y=75 pixels up
translated = imutils.translate(workspace, 25, -75)

Output:

Translation example

Rotation

Rotating an image in OpenCV is accomplished by making a call to cv2.getRotationMatrix2D and cv2.warpAffine. Further care has to be taken to supply the (x, y)-coordinate of the point the image is to be rotated about. These calculation calls can quickly add up and make your code bulky and less readable. The rotate function in imutils helps resolve this problem.

Example:

# loop over the angles to rotate the image
for angle in xrange(0, 360, 90):
	# rotate the image and display it
	rotated = imutils.rotate(bridge, angle=angle)
	cv2.imshow("Angle=%d" % (angle), rotated)

Output:

Rotation example

Resizing

Resizing an image in OpenCV is accomplished by calling the cv2.resize function. However, special care needs to be taken to ensure that the aspect ratio is maintained. This resize function of imutils maintains the aspect ratio and provides the keyword arguments width and height so the image can be resized to the intended width/height while (1) maintaining aspect ratio and (2) ensuring the dimensions of the image do not have to be explicitly computed by the developer.

Another optional keyword argument, inter, can be used to specify interpolation method as well.

Example:

# loop over varying widths to resize the image to
for width in (400, 300, 200, 100):
	# resize the image and display it
	resized = imutils.resize(workspace, width=width)
	cv2.imshow("Width=%dpx" % (width), resized)

Output:

Resizing example

Skeletonization

Skeletonization is the process of constructing the "topological skeleton" of an object in an image, where the object is presumed to be white on a black background. OpenCV does not provide a function to explicitly construct the skeleton, but does provide the morphological and binary functions to do so.

For convenience, the skeletonize function of imutils can be used to construct the topological skeleton of the image.

The first argument, size is the size of the structuring element kernel. An optional argument, structuring, can be used to control the structuring element -- it defaults to cv2.MORPH_RECT , but can be any valid structuring element.

Example:

# skeletonize the image
gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
skeleton = imutils.skeletonize(gray, size=(3, 3))
cv2.imshow("Skeleton", skeleton)

Output:

Skeletonization example

Displaying with Matplotlib

In the Python bindings of OpenCV, images are represented as NumPy arrays in BGR order. This works fine when using the cv2.imshow function. However, if you intend on using Matplotlib, the plt.imshow function assumes the image is in RGB order. A simple call to cv2.cvtColor will resolve this problem, or you can use the opencv2matplotlib convenience function.

Example:

# INCORRECT: show the image without converting color spaces
plt.figure("Incorrect")
plt.imshow(cactus)

# CORRECT: convert color spaces before using plt.imshow
plt.figure("Correct")
plt.imshow(imutils.opencv2matplotlib(cactus))
plt.show()

Output:

Matplotlib example

URL to Image

This the url_to_image function accepts a single parameter: the url of the image we want to download and convert to a NumPy array in OpenCV format. This function performs the download in-memory. The url_to_image function has been detailed here on the PyImageSearch blog.

Example:

url = "http://pyimagesearch.com/static/pyimagesearch_logo_github.png"
logo = imutils.url_to_image(url)
cv2.imshow("URL to Image", logo)
cv2.waitKey(0)

Output:

Matplotlib example

Checking OpenCV Versions

OpenCV 3 has finally been released! But with the major release becomes backward compatibility issues (such as with the cv2.findContours and cv2.normalize functions). If you want your OpenCV 3 code to be backwards compatible with OpenCV 2.4.X, you'll need to take special care to check which version of OpenCV is currently being used and then take appropriate action. The is_cv2() and is_cv3() are simple functions that can be used to automatically determine the OpenCV version of the current environment.

Example:

print("Your OpenCV version: {}".format(cv2.__version__))
print("Are you using OpenCV 2.X? {}".format(imutils.is_cv2()))
print("Are you using OpenCV 3.X? {}".format(imutils.is_cv3()))

Output:

Your OpenCV version: 3.0.0
Are you using OpenCV 2.X? False
Are you using OpenCV 3.X? True

Automatic Canny Edge Detection

The Canny edge detector requires two parameters when performing hysteresis. However, tuning these two parameters to obtain an optimal edge map is non-trivial, especially when working with a dataset of images. Instead, we can use the auto_canny function which uses the median of the grayscale pixel intensities to derive the upper and lower thresholds. You can read more about the auto_canny function here.

Example:

gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
edgeMap = imutils.auto_canny(gray)
cv2.imshow("Original", logo)
cv2.imshow("Automatic Edge Map", edgeMap)

Output:

Matplotlib example

4-point Perspective Transform

A common task in computer vision and image processing is to perform a 4-point perspective transform of a ROI in an image and obtain a top-down, "birds eye view" of the ROI. The perspective module takes care of this for you. A real-world example of applying a 4-point perspective transform can be bound in this blog on on building a kick-ass mobile document scanner.

Example

See the contents of demos/perspective_transform.py

Output:

Matplotlib example

Sorting Contours

The contours returned from cv2.findContours are unsorted. By using the contours module the the sort_contours function we can sort a list of contours from left-to-right, right-to-left, top-to-bottom, and bottom-to-top, respectively.

Example:

See the contents of demos/sorting_contours.py

Output:

Matplotlib example

(Recursively) Listing Paths to Images

The paths sub-module of imutils includes a function to recursively find images based on a root directory.

Example:

Assuming we are in the demos directory, let's list the contents of the ../demo_images:

from imutils import paths
for imagePath in paths.list_images("../demo_images"):
	print imagePath

Output:

../demo_images/bridge.jpg
../demo_images/cactus.jpg
../demo_images/notecard.png
../demo_images/pyimagesearch_logo.jpg
../demo_images/shapes.png
../demo_images/workspace.jpg
Owner
PyImageSearch
Computer vision and deep learning
PyImageSearch
A SIXEL encoder/decoder implementation derived from kmiya's sixel

libsixel What is this? This package provides encoder/decoder implementation for DEC SIXEL graphics, and some converter programs. (https://youtu.be/0Sa

Hayaki Saito 2k Jan 09, 2023
This script is for photographers to do timeslice with one click.

One Click TimeSlice Tool What is this for This is for photographers who want to create TimeSlice pictures without installing PS plugins. Before using

Xi Zhao 13 Sep 23, 2022
GTK and Python based, simple multiple image editor tool

System Monitoring Center GTK3 and Python3 based, simple multiple image editor tool. Note: Development of this application is not completed yet. The ap

Hakan Dündar 1 Feb 02, 2022
Converting Images Into Minecraft Houses

Converting Images Into Minecraft Houses In this particular project, we turned a 2D Image into Minecraft pixel art and then scaled it in 3D such that i

Mathias Oliver Valdbjørn Jørgensen 1 Feb 02, 2022
Utilities for SteamVR on Linux

This project contains scripts to improve the functionally of SteamVR on Linux:

86 Dec 29, 2022
Samila is a generative art generator written in Python

Samila is a generative art generator written in Python, Samila let's you create arts based on many thousand points. The position of every single point is calculated by a formula, which has random par

Sepand Haghighi 947 Dec 30, 2022
An agnostic Canvas API for the browser-less and insane

Apollo An agnostic Canvas API for the browser-less and mildly insane. Project Apollo is a Pythonic re-imagining of HTML Canvas element implementati

1 Jan 13, 2022
Python Image Optimizer Script

Image-Optimizer Download and Install git clone https://github.com/stefankumpan/Image-Optimizer-Script.git cd Image-Optimizer-Script pip install -r req

Stefan Kumpan 0 Jul 15, 2021
Image Processing - Make noise images clean

影像處理-影像降躁化(去躁化) (Image Processing - Make Noise Images Clean) 得力於電腦效能的大幅提升以及GPU的平行運算架構,讓我們能夠更快速且有效地訓練AI,並將AI技術應用於不同領域。本篇將帶給大家的是 「將深度學習應用於影像處理中的影像降躁化 」,

2 Aug 04, 2022
QR Code Generator

In this project, we'll be using some libraries to instantly generate authentic QR Codes and export them in various formats

Hassan Shahzad 3 Jun 02, 2022
A procedural Blender pipeline for photorealistic training image generation

BlenderProc2 A procedural Blender pipeline for photorealistic rendering. Documentation | Tutorials | Examples | ArXiv paper | Workshop paper Features

DLR-RM 1.8k Jan 02, 2023
Validate arbitrary image uploads from incoming data urls while preserving file integrity but removing EXIF and unwanted artifacts and RCE exploit potential

Validate arbitrary base64-encoded image uploads as incoming data urls while preserving image integrity but removing EXIF and unwanted artifacts and mitigating RCE-exploit potential.

A3R0 1 Jan 10, 2022
Image Compression GUI APP Python: PyQt5

Image Compression GUI APP Image Compression GUI APP Python: PyQt5 Use : f5 or debug or simply run it on your ids(vscode , pycham, anaconda etc.) socia

Sourabh Dhalia 1 May 21, 2022
MetaStalk is a tool that can be used to generate graphs from the metadata of JPEG, TIFF, and HEIC images

MetaStalk About MetaStalk is a tool that can be used to generate graphs from the metadata of JPEG, TIFF, and HEIC images, which are tested. More forma

Cyb3r Jak3 1 Jul 05, 2021
Simple utility to tinker with OPlus images

OPlus image utilities Prerequisites Linux running kernel 5.4 or up (check with uname -r) Image rebuilding Used to rebuild read-only erofs images into

Wiley Lau 15 Dec 28, 2022
QSIprep: Preprocessing and analysis of q-space images

QSIprep: Preprocessing and analysis of q-space images Full documentation at https://qsiprep.readthedocs.io About qsiprep configures pipelines for proc

Lifespan Informatics and Neuroimaging Center 88 Dec 15, 2022
Repair broken bookmarks to referenced files in Apple Photos

Repair Apple Photos Bookmarks Work in progress to repair file location bookmarks in Apple Photos. Background Starting in macOS 10.15/Catalina, photos

Rhet Turnbull 10 Nov 03, 2022
An example which streams RGB-D images over spout.

Spout RGB-D Example An example which streams RGB-D images over spout with visiongraph. Due to the spout dependency this currently only works on Window

Florian Bruggisser 4 Nov 14, 2022
Create a 2D mesh for an airfoil in GMSH using python.

GMSHFoil A simple class to create a 2D mesh for an airfoil in GMSH using python. Requirements pip install airfoils

Charilaos Mylonas 1 May 16, 2022
Python Script to generate posters out of the images in directory.

Poster-Maker Python Script to generate posters out of the images in directory. This version is very basic ligthweight code to combine organize images

1 Feb 02, 2022