Beam designs for infinite Z 3D printers

Overview

A 3D printed beam that is as stiff as steel

A while ago Naomi Wu 机械妖姬 very kindly sent us one of Creality's infinite-Z belt printers. Lots of people have printed long I beams on this type of machine, but we thought that we'd write a Python FreeCAD program to generate parametric beams more suitable for 3D printing, taking advantage of the fact that complexity is more or less free with this technology and that infinite-Z belt printers can print many overhanging shapes without support material. The result is a beam that is about as stiff as a steel beam of the same weight.

The image above shows an example of the Python output. All you need to specify is the length, width, and height, the thickness of the struts, and the diameter and number of the screw holes in the mounting blocks at the ends. The program then automatically generates the entire beam.

The central section consists of a row of open boxes, each of which is decomposed into tetrahedra. This effectively means that the entire shape is built from tetrahedra - the strongest shape - and also that most of the material is on the outer faces which gives a high second-moment of cross-sectional area for bending resistance in all directions.  The diagonals are angled so that a belt printer with a 45o Z movement can print the entire structure without support material.

The blocks at the ends are for bolting the beams to each other or to other items. The rings of 12 small holes shown allow any orientation in increments of 30o. The large holes are to allow wiring, tubes and other services to be run down the middle of the beams and connect up at the ends, or to allow things such as drive shafts to be accommodated.

It turns out that FreeCAD can't model the rings of small holes. If you want to skip a technical explanation of why this is so then just know that there's a work-round and ignore the italic section that follows.

The image below shows the shape of all the small holes that needs to be subtracted from the end blocks.

As you can see, there are a lot of common tangencies where cylinders cross. When FreeCAD throws the calculation of these to Open Cascade, which is the geometric modeller that FreeCAD uses to represent shapes, it goes away and gets lost in its own thoughts (CPU: 100%...) and you never hear from it again. I (Adrian) don't think this is really a bug in Open Cascade; any boundary-representation (B-rep) geometric modeller would probably have the same problem. Because (as the name implies) B-rep modellers represent shapes by recording the topology and geometry of their surfaces, they have to put a lot of effort into doing things like working out the curves of intersection between surfaces, and keeping all the shape topology consistent while this is done. In some cases this is quite literally impossible. For example there is no closed-form solution to working out the curve of intersection between two NURBS surfaces; that always has to be approximated. Even for cylinder-cylinder intersections, things can get complicated (look at the topological stitch-lines running along the cylinders in the picture; these all have to be matched up).

Set-theoretic (or CSG) geometric modellers have none of these problems because they don't represent the surfaces of objects; they represent their solidity. In their simplest form they can only answer one question: given a point (x, y, z), is it inside the solid part of the object or outside? - a so-called membership test. (In practice set-theoretic modellers can all do much more than this.) And they do membership-tests with rock-solid certainty. Unfortunately they are rarely used in CAD systems, except as a means of input. The reasons for this are historical rather than technical. For example the invention of the hardware depth-buffer, which allows computer graphics systems to make pictures of large numbers of triangles blindingly fast, favoured the early development of systems that represent surfaces (which are easy to triangulate). If instead a hardware ray-tracer had been implemented, then set-theoretic modellers (which are natural choices for ray tracing) might have come to dominate. (I wrote a set-theoretic modeller called SvLis in C++ about three decades ago; if you want to go mad see if you can get it going with a modern C++ compiler. If you succeed, DM me...)

The work-round in FreeCAD that allows the cylinders to be dealt with is as simple as it is nasty. The cylinder radii are perturbed a tiny bit at random:

cyl = Part.makeCylinder(d/2 + random.uniform(-0.01, 0.01), z + 0.2)

This means that what were common tangencies no longer are, quite . The perturbation is well below the resolution of 3D printing.

The following image shows the beams being printed in PLA.

When it was done, we subjected one to a bending test using weights and a dial gauge to measure deflection.

Note the pieces of wood on the left; if only we had some way to 3D-print structural parts...

The beam was held and deflected sideways so it couldn't slip in the vice. Here are the results:

The equation is that of the least-squares fit straight line. The effective length of the beam (ignoring the clamped end) was 175 mm. Its stiffness was 1.02 x 10-4 mN-1 from the graph. This meant that its flexural rigidity (EI) was 17.5 Nm2 (where E is Young's modulus in Pa and I is the second moment of area in m4). Thus we can work out that an equivalent steel beam would be 5 mm square. (That is to say, a steel beam with the same EI value.)

The printed beam weighed 47.7 grams. Coincidentally a 5 mm square steel beam of the same length (including the clamped end) would weigh about the same (47 grams), so we have made a printed beam that is about as stiff as the same weight of steel.

The printed beam was physically bigger than its steel equivalent, of course. This is to be expected as PLA has a much lower elastic modulus than steel. But printing allows any size easily to be created, it allows services to be run up the insides, and it allows a fancy pattern of attachments and screw holes to be created at the ends, all automatically.

It would also allow a beam of beams to be printed. Because it needs no support, this beam design could be used as the struts of a much bigger beam in the same pattern. This would make a fractal beam...

Our Python program that makes the beams in FreeCAD is in the Software directory of this repository in the file square-beam.py. The file Z-beam.scad is an OpenSCAD set-theoretic (CSG) version by David Eccles that he did a few hours after we released this. We all love open-source!

It has not escaped our attention that beams of this sort would be ideal components for building a RepRap infinite-Z belt printer.

Owner
RepRap Ltd
RepRap Ltd specialises in research and development in self-replicating open-source 3D printing.
RepRap Ltd
Control DJI Tello with Raspberry Pi and PS4 Controller

Control-DJI-Tello-with-Raspberry-Pi-and-PS4-Controller Demo of this project see

MohammadReza Sharifi 24 Aug 11, 2022
Implementation of Forwards Kinematics, Inverse Kinematics, Point to Point Movement and Synchronous movement for Kuka KR 120 R2700-2.

I made this project for my university course in robotics. I rarely found any information regarding the implementation of mathematics in code. So I decided to make this repo in order to help others :)

2 Dec 27, 2022
ok-system-helper是一个简单的系统硬件的实时信息收集工具,使用python3.x开发

ok-system-helper ok-system-helper是一个简单的系统硬件的实时信息收集工具,使用python3.x开发,支持哪些硬件:CPU、内存、SWAP、磁盘、网卡流量。用户可在自己的项目中直接引入、开箱即用,或者结合flask等web框架轻松做成http接口供前端调用,亦可通过注

xlvchao 1 Feb 08, 2022
Интеграция Home Assistant с ЛК "Интер РАО"

ЕЛК ЖКХ «Интер РАО» для Home Assistant Предоставление информации о текущем состоянии ваших аккаунтов в ЕЛК ЖКХ. Введение @ TODO @ Установка Посредство

Alexander Ryazanov 27 Nov 05, 2022
Raspberry Pi & Accelerometer with Losant's EEA

Raspberry Pi & Accelerometer with Losant's EEA This is a repository that contains companion code to this EEA How To guide. Each folder is named accord

Losant 1 Oct 29, 2021
Authentication provider using Synology DSM users for Home Assistant

Authentication provider using Synology DSM users for Home Assistant The Synology authentication provider lets you authenticate using the users in your

Sam Debruyn 5 Oct 06, 2022
Self Driving Car Prototype

Package Delivery Rover 🚀 This project is a prototype of Self Driving Car. It's based on embedded systems, to meet the current requirement of delivery

Abhishek Pawar 1 Oct 31, 2021
Custom component for Home Assistant that integrates Candy/Haier Wi-Fi washing machines (also known as Simply-Fi).

Candy Home Assistant component Custom component for Home Assistant that integrates Candy/Haier Wi-Fi washing machines (also known as Simply-Fi). This

Olivér Falvai 61 Dec 29, 2022
A Simple Python KeyLogger App

✨ Kurulum Uygulamayı bilgisayarınızda kullana bilmek için bazı işlemler yapmanız gerekiyor. Aşağıdaki yönlendirmeleri takip ederek bunu yapabilirsiniz

VorteX 7 Jun 11, 2022
Code and build instructions for Snap, a simple Raspberry Pi and LED machine to show you how expensive the electricyty is at the moment

Code and build instructions for Snap, a simple Raspberry Pi and LED machine to show you how expensive the electricyty is at the moment. On row of LEDs shows the cost of the hour, the other row the co

Johan Jonk Stenström 3 Sep 08, 2022
A DUCO (Duino-Coin) miner for GigaDevice ARM boards.

GD32 Duino-Coin Miner Description Contains the firmware and miner software for mining DUCO (Duino-Coin) on GigaDevice GD32 chips. Supported boards GD3

Maximilian Gerhardt 2 Feb 20, 2022
This is a collection of python modules that interact with the Ryze Tello drone.

This is a collection of python modules that interact with the Ryze Tello drone.

DJI-SDK 1.2k Jan 03, 2023
Python implementation of ZMP Preview Control approach for biped robot control.

ZMP Preview Control This is the Python implementation of ZMP Preview Control app

Chaobin 24 Dec 19, 2022
Automate gate/garage door opening via 433.92MHz emitter with Raspberry Pi, Home Assistant and Homekit.

Automate opening your garage door / gate Summary This project sums up how I automated opening my garage door using a Raspberry PI, a 433Mhz emitter, H

Julien Fouilhé 29 Nov 30, 2022
Scripts for measuring and displaying thermal behavior on Voron 3D printers

Thermal Profiling Measuring gantry deflection and frame expansion This script runs a series of defined homing and probing routines designed to charact

Jon Sanders 30 Nov 27, 2022
3d printable macropad

Pico Mpad A 3D printable macropad for automating frequently repeated actions. Hardware To build this project you need access to a 3d printer. The mode

Dmytro Panin 94 Jan 07, 2023
Detic ros - A simple ROS wrapper for Detic instance segmentation using pre-trained dataset

Detic ros - A simple ROS wrapper for Detic instance segmentation using pre-trained dataset

Hirokazu Ishida 12 Nov 19, 2022
LedFx is a network based LED effect controller with support for advanced real-time audio effects

Welcome to LedFx ✨ -Making music come alive! LedFx website: https://ledfx.app/ What is LedFx? What LedFx offers is the ability to take audio input, an

786 Jan 02, 2023
A iot Bike sytem based on RaspberryPi, Ardiuino

Cyclic 's Kernel ---- A iot Bike sytem based on RaspberryPi, Ardiuino, etc 0x1 What is This? Cyclic 's Kernel is an independent System With self-produ

Retr0mous 2 Oct 09, 2022
Raspberry Pi Pico development platform for PlatformIO

Raspberry Pi Pico development platform for PlatformIO A few words in the beginning Before experimental please Reinstall the platform Version: 1.0.0 Th

Georgi Angelov 160 Dec 23, 2022