BErt-like Neurophysiological Data Representation

Related tags

Data AnalysisBENDR
Overview

BENDR

BErt-like Neurophysiological Data Representation

A picture of Bender from Futurama

This repository contains the source code for reproducing, or extending the BERT-like self-supervision pre-training for EEG data from the article:

BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data

To run these scripts, you will need to use the DN3 project. We will try to keep this updated so that it works with the latest DN3 release. If you are just looking for the BENDR model, and don't need to reproduce the article results per se, BENDR will be (or maybe already is if I forgot to update it here) integrated into DN3, in which case I would start there.

Currently, we recommend version 0.2. Feel free to open an issue if you are having any trouble.

More extensive instructions are upcoming, but in essence you will need to either:

a)  Download the TUEG dataset and pre-train new encoder and contextualizer weights, _or_
b)  Use the [pre-trained model weights](https://github.com/SPOClab-ca/BENDR/releases/tag/v0.1-alpha)

Once you have a pre-trained model:

1) Add the paths of the pre-trained weights to configs/downstream.yml
2) Edit paths to local copies of your datasets in configs/downstream_datasets.yml
3) Run downstream.sh

Comments
  • about the loss function

    about the loss function

    Very appreciate for your contribution.i am really interested in the self training in EEG. The only question is about calculating loss function. In your paper, The calculation of the denominator uses cosine similarity between the output of the transformer and the 20 distractors and the input of the transformer. However, in the code, the calculation of the denominator uses cosine similarity between the input of the transformer and the 20 distractors, and the output of the transformer. In other word, the output and the input switch positions. Are both the calculation approaches the same? Or why did you change the calculation approache in the code? Thanks!

    opened by stickOverCarrot 2
  • About deploy downstream.yml and downstream_datasets.yml

    About deploy downstream.yml and downstream_datasets.yml

    Tranks for supplying your code. But when I follow your markdown, I meet some problems image

    This is my project files image

    This is my downstream.yml image

    This is my downstream_datasets.yml image

    opened by YoloEliwa 1
  • Pre-trained weights?

    Pre-trained weights?

    Not an issue per se, but you state the pre-trained weights for your paper are available in this repo, yet I have had a good look around and I haven't found them, nor a means of downloading them. Please can you let me know where I could find them? I'm really keen to try out this exciting architecture you've put together!

    opened by SgtWhiskeyjack 1
  • result_tracking module

    result_tracking module

    There's a reference that's in the module import: downstream.py from result_tracking import ThinkerwiseResultTracker that looks like some type of tracking code for experiments?

    opened by bencten 1
  • dropout should change

    dropout should change

    Iteration: 4%|▍ | 13/330 [00:36<16:00, 3.03s/batches, bac=0.5, Accuracy=0.51, loss=0.695, lr=1.47e-6]D:\Anaconda\envs\LGG\lib\site-packages\torch\nn\functional.py:1338: UserWarning: dropout2d: Received a 3D input to dropout2d and assuming that channel-wise 1D dropout behavior is desired - input is interpreted as shape (N, C, L), where C is the channel dim. This behavior will change in a future release to interpret the input as one without a batch dimension, i.e. shape (C, H, W). To maintain the 1D channel-wise dropout behavior, please switch to using dropout1d instead. warnings.warn("dropout2d: Received a 3D input to dropout2d and assuming that channel-wise "

    opened by zy2021314 0
  • A more detailed explanation

    A more detailed explanation

    We need to use your code for research, may I ask when you can provide detailed explanation, because we have some difficulties in understanding the code without detailed explanation.

    opened by EchizenMike 0
  • preload in downstream.yml

    preload in downstream.yml

    In the "downstream.yml" file, what is the function of the "preload"? What's mean if I specify "preload: True" or "preload: False"?

    Thank you in advance

    opened by frannfuri 0
Releases(v0.1-alpha)
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

Materials Discovery Group 61 Oct 02, 2022
Analyzing Earth Observation (EO) data is complex and solutions often require custom tailored algorithms.

eo-grow Earth observation framework for scaled-up processing in Python. Analyzing Earth Observation (EO) data is complex and solutions often require c

Sentinel Hub 18 Dec 23, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
Spectral Analysis in Python

SPECTRUM : Spectral Analysis in Python contributions: Please join https://github.com/cokelaer/spectrum contributors: https://github.com/cokelaer/spect

Thomas Cokelaer 280 Dec 16, 2022
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022
A program that uses an API and a AI model to get info of sotcks

Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks

1 Dec 17, 2021
Feature engineering and machine learning: together at last

Feature engineering and machine learning: together at last! Lambdo is a workflow engine which significantly simplifies data analysis by unifying featu

Alexandr Savinov 14 Sep 15, 2022
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Anomaly Detection with R

AnomalyDetection R package AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the pre

Twitter 3.5k Dec 27, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021