Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Overview

Beyond the Spectrum

Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keuper and Mario Fritz.

Pretrained Models

We release the model trained on CelebA-HQ dataset with image resolution 1024x1024. For the super resolution, we use 25,000 real images from CelebA-HQ to train it. For the detectors, we use 25,000 real images and 25,000 fake images to train a binary classifier based on ResNet-50.

We release some models as examples to show how to apply our models based on pixel-level or stage5-level reconstruction errors to detect deepfakes. Download link: https://drive.google.com/file/d/1FeIgABjBpjtnXT-Hl6p5a5lpZxINzXwv/view?usp=sharing.

If you have further questions regarding the trained models, please feel free to contact.

Train

  1. Train the super resolution model.

We use Residual Dense Network (RDN) in our work. The following script shows the hyperparameters used in our experiments. To be noticed, we only use 4 images to show how to run the script. For simplicity, you can download the pretrained model from the above link.

bash script/train_super_resolution_celeba.sh [GPU_ID]
  1. Train the detectors.

After obtaining the super resolution, we use pixel-level or stage5-level L1 based recontruction error to train a classifier. The following scripts use 10 training example to show how to train a classifier with a given super resolution model. You may need to adjust the learning rate and number of training epochs in your case.

bash script/train_pixel_pggan.sh [GPU_ID]
  1. Finetune with auxiliary tasks

In order to improve the robustness of our detectors, we introduce auxiliary tasks (i.e., colorization or denoising) into the super resolution model training and finetune the whole model end-to-end. The following scripts show how to train a model with those tasks.

bash script/train_pixel_pggan_colorization.sh [GPU_ID]
bash script/train_stage5_stylegan_denoising.sh [GPU_ID]

Test

Please download our models. You can use pixel-level or stage5-level to perform deepfakes detection.

bash script/test_pixel_celeba.sh [GPU_ID]
bash script/test_stage5_celeba.sh [GPU_ID]

Citation

If our work is useful for you, please cite our paper:

@inproceedings{yang_ijcai21,
  title={Beyond the Spectrum: Detecting Deepfakes via Re-synthesis},
  author={Yang He and Ning Yu and Margret Keuper and Mario Fritz},
  booktitle={30th International Joint Conference on Artificial Intelligence (IJCAI)},
  year={2021}
}

Contact: Yang He ([email protected])

Last update: 08-22-2021

Owner
Yang He
Applied Scientist in Amazon Last Mile PostDoc in CISPA Helmholtz Center for Information Security / PhD in Max Planck Institute for Informatics
Yang He
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
LBK 26 Dec 28, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022