UniFormer - official implementation of UniFormer

Overview

UniFormer

This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It currently includes code and models for the following tasks:

Updates

01/13/2022

[Initial commits]:

  1. Pretrained models on ImageNet-1K, Kinetics-400, Kinetics-600, Something-Something V1&V2

  2. The supported code and models for image classification and video classification are provided.

Introduction

UniFormer (Unified transFormer) is introduce in arxiv, which effectively unifies 3D convolution and spatiotemporal self-attention in a concise transformer format. We adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.

UniFormer achieves strong performance on video classification. With only ImageNet-1K pretraining, our UniFormer achieves 82.9%/84.8% top-1 accuracy on Kinetics-400/Kinetics-600, while requiring 10x fewer GFLOPs than other comparable methods (e.g., 16.7x fewer GFLOPs than ViViT with JFT-300M pre-training). For Something-Something V1 and V2, our UniFormer achieves 60.9% and 71.2% top-1 accuracy respectively, which are new state-of-the-art performances.

teaser

Main results on ImageNet-1K

Please see image_classification for more details.

More models with large resolution and token labeling will be released soon.

Model Pretrain Resolution Top-1 #Param. FLOPs
UniFormer-S ImageNet-1K 224x224 82.9 22M 3.6G
UniFormer-S† ImageNet-1K 224x224 83.4 24M 4.2G
UniFormer-B ImageNet-1K 224x224 83.9 50M 8.3G

Main results on Kinetics-400

Please see video_classification for more details.

Model Pretrain #Frame Sampling Method FLOPs K400 Top-1 K600 Top-1
UniFormer-S ImageNet-1K 16x1x4 16x4 167G 80.8 82.8
UniFormer-S ImageNet-1K 16x1x4 16x8 167G 80.8 82.7
UniFormer-S ImageNet-1K 32x1x4 32x4 438G 82.0 -
UniFormer-B ImageNet-1K 16x1x4 16x4 387G 82.0 84.0
UniFormer-B ImageNet-1K 16x1x4 16x8 387G 81.7 83.4
UniFormer-B ImageNet-1K 32x1x4 32x4 1036G 82.9 84.5*

* Since Kinetics-600 is too large to train (>1 month in single node with 8 A100 GPUs), we provide model trained in multi node (around 2 weeks with 32 V100 GPUs), but the result is lower due to the lack of tuning hyperparameters.

Main results on Something-Something

Please see video_classification for more details.

Model Pretrain #Frame FLOPs SSV1 Top-1 SSV2 Top-1
UniFormer-S K400 16x3x1 125G 57.2 67.7
UniFormer-S K600 16x3x1 125G 57.6 69.4
UniFormer-S K400 32x3x1 329G 58.8 69.0
UniFormer-S K600 32x3x1 329G 59.9 70.4
UniFormer-B K400 16x3x1 290G 59.1 70.4
UniFormer-B K600 16x3x1 290G 58.8 70.2
UniFormer-B K400 32x3x1 777G 60.9 71.1
UniFormer-B K600 32x3x1 777G 61.0 71.2

Main results on downstream tasks

We have conducted extensive experiments on downstream tasks and achieved comparable results with SOTA models.

Code and models will be released in two weeks.

Cite Uniformer

If you find this repository useful, please use the following BibTeX entry for citation.

@misc{li2022uniformer,
      title={Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning}, 
      author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
      year={2022},
      eprint={2201.04676},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This project is released under the MIT license. Please see the LICENSE file for more information.

Contributors and Contact Information

UniFormer is maintained by Kunchang Li.

For help or issues using UniFormer, please submit a GitHub issue.

For other communications related to UniFormer, please contact Kunchang Li ([email protected]).

Owner
SenseTime X-Lab
Powered by X-Lab, SenseTime Research
SenseTime X-Lab
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
šŸš€ PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ā„“1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ā„“1 Norm Optimisation" (NAACL 2021) šŸ™ˆ A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022