BCI datasets and algorithms

Related tags

Algorithmsbrainda
Overview

Brainda

Welcome!

First and foremost, Welcome!

Thank you for visiting the Brainda repository which was initially released at this repo and reorganized here. This project is meant to provide datasets and decoding algorithms for BCI research, using python, as a part of the MetaBCI project which aims to provide a python platform for BCI users to design paradigm, collect data, process signals, present feedbacks and drive robots.

This document is a hub to give you some information about the project. Jump straight to one of the sections below, or just scroll down to find out more.

What are we doing?

The problem

  • BCI datasets come in different formats and standards
  • It's tedious to figure out the details of the data
  • Lack of python implementations of modern decoding algorithms

If someone new to the BCI wants to do some interesting research, most of their time would be spent on preprocessing the data or reproducing the algorithm in the paper.

The solution

The Brainda will:

  • Allow users to load the data easily without knowing the details
  • Provide flexible hook functions to control the preprocessing flow
  • Provide the latest decoding algorithms

The goal of the Brainda is to make researchers focus on improving their own BCI algorithms without wasting too much time on preliminary preparations.

Features

  • Improvements to MOABB APIs

    • add hook functions to control the preprocessing flow more easily
    • use joblib to accelerate the data loading
    • add proxy options for network conneciton issues
    • add more information in the meta of data
    • other small changes
  • Supported Datasets

    • MI Datasets
      • AlexMI
      • BNCI2014001, BNCI2014004
      • PhysionetMI, PhysionetME
      • Cho2017
      • MunichMI
      • Schirrmeister2017
      • Weibo2014
      • Zhou2016
    • SSVEP Datasets
      • Nakanishi2015
      • Wang2016
      • BETA
  • Implemented BCI algorithms

    • Decomposition Methods
      • SPoC, CSP, MultiCSP and FBCSP
      • CCA, itCCA, MsCCA, ExtendCCA, ttCCA, MsetCCA, MsetCCA-R, TRCA, TRCA-R, SSCOR and TDCA
      • DSP
    • Manifold Learning
      • Basic Riemannian Geometry operations
      • Alignment methods
      • Riemann Procustes Analysis
    • Deep Learning
      • ShallowConvNet
      • EEGNet
      • ConvCA
      • GuneyNet
    • Transfer Learning
      • MEKT
      • LST

Installation

  1. Clone the repo
    git clone https://github.com/TBC-TJU/brainda.git
  2. Change to the project directory
    cd brainda
  3. Install all requirements
    pip install -r requirements.txt 
  4. Install brainda package with the editable mode
    pip install -e .

Usage

Data Loading

In basic case, we can load data with the recommended options from the dataset maker.

from brainda.datasets import AlexMI
from brainda.paradigms import MotorImagery

dataset = AlexMI() # declare the dataset
paradigm = MotorImagery(
    channels=None, 
    events=None,
    intervals=None,
    srate=None
) # declare the paradigm, use recommended Options

print(dataset) # see basic dataset information

# X,y are numpy array and meta is pandas dataFrame
X, y, meta = paradigm.get_data(
    dataset, 
    subjects=dataset.subjects, 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)
print(X.shape)
print(meta)

If you don't have the dataset yet, the program would automatically download a local copy, generally in your ~/mne_data folder. However, you can always download the dataset in advance and store it in your specific folder.

dataset.download_all(
    path='/your/datastore/folder', # save folder
    force_update=False, # re-download even if the data exist
    proxies=None, # add proxy if you need, the same as the Request package
    verbose=None
)

# If you encounter network connection issues, try this
# dataset.download_all(
#     path='/your/datastore/folder', # save folder
#     force_update=False, # re-download even if the data exist
#     proxies={
#         'http': 'socks5://user:[email protected]:port',
#         'https': 'socks5://user:[email protected]:port'
#     },
#     verbose=None
# )

You can also choose channels, events, intervals, srate, and subjects yourself.

paradigm = MotorImagery(
    channels=['C3', 'CZ', 'C4'], 
    events=['right_hand', 'feet'],
    intervals=[(0, 2)], # 2 seconds
    srate=128
)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[2, 4], 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)
print(X.shape)
print(meta)

or use different intervals for events. In this case, X, y and meta should be returned in dict.

dataset = AlexMI()
paradigm = MotorImagery(
    channels=['C3', 'CZ', 'C4'], 
    events=['right_hand', 'feet'],
    intervals=[(0, 2), (0, 1)], # 2s for right_hand, 1s for feet
    srate=128
)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[2, 4], 
    return_concat=False, 
    n_jobs=None, 
    verbose=False)
print(X['right_hand'].shape, X['feet'].shape)

Preprocessing

Here is the flow of paradigm.get_data function:

brainda provides 3 hooks that enable you to control the preprocessing flow in paradigm.get_data. With these hooks, you can operate data just like MNE typical flow:

dataset = AlexMI()
paradigm = MotorImagery()

# add 6-30Hz bandpass filter in raw hook
def raw_hook(raw, caches):
    # do something with raw object
    raw.filter(6, 30, 
        l_trans_bandwidth=2, 
        h_trans_bandwidth=5, 
        phase='zero-double')
    caches['raw_stage'] = caches.get('raw_stage', -1) + 1
    return raw, caches

def epochs_hook(epochs, caches):
    # do something with epochs object
    print(epochs.event_id)
    caches['epoch_stage'] = caches.get('epoch_stage', -1) + 1
    return epochs, caches

def data_hook(X, y, meta, caches):
    # retrive caches from the last stage
    print("Raw stage:{},Epochs stage:{}".format(caches['raw_stage'], caches['epoch_stage']))
    # do something with X, y, and meta
    caches['data_stage'] = caches.get('data_stage', -1) + 1
    return X, y, meta, caches

paradigm.register_raw_hook(raw_hook)
paradigm.register_epochs_hook(epochs_hook)
paradigm.register_data_hook(data_hook)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[1], 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)

If the dataset maker provides these hooks in the dataset, brainda would call these hooks implictly. But you can always replace them with the above code.

Machine Learning Pipeline

Now it's time to do some real BCI algorithms. Here is a demo of CSP for 2-class MI:

import numpy as np

from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline

from brainda.datasets import AlexMI
from brainda.paradigms import MotorImagery
from brainda.algorithms.utils.model_selection import (
    set_random_seeds,
    generate_kfold_indices, match_kfold_indices)
from brainda.algorithms.decomposition import CSP

dataset = AlexMI()
paradigm = MotorImagery(events=['right_hand', 'feet'])

# add 6-30Hz bandpass filter in raw hook
def raw_hook(raw, caches):
    # do something with raw object
    raw.filter(6, 30, l_trans_bandwidth=2, h_trans_bandwidth=5, phase='zero-double', verbose=False)
    return raw, caches

paradigm.register_raw_hook(raw_hook)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[3], 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)

# 5-fold cross validation
set_random_seeds(38)
kfold = 5
indices = generate_kfold_indices(meta, kfold=kfold)

# CSP with SVC classifier
estimator = make_pipeline(*[
    CSP(n_components=4),
    SVC()
])

accs = []
for k in range(kfold):
    train_ind, validate_ind, test_ind = match_kfold_indices(k, meta, indices)
    # merge train and validate set
    train_ind = np.concatenate((train_ind, validate_ind))
    p_labels = estimator.fit(X[train_ind], y[train_ind]).predict(X[test_ind])
    accs.append(np.mean(p_labels==y[test_ind]))
print(np.mean(accs))

If everything is fine, you will get the accuracy about 0.75.

Who are we?

The MetaBCI project is carried out by researchers from

  • Academy of Medical Engineering and Translational Medicine, Tianjin University, China
  • Tianjin Brain Center, China

Dr.Lichao Xu is the main contributor to the Brainda repository.

What do we need?

You! In whatever way you can help.

We need expertise in programming, user experience, software sustainability, documentation and technical writing and project management.

We'd love your feedback along the way.

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated. Especially welcome to submit BCI algorithms.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Email: [email protected]

Acknowledgements

Distributed algorithms, reimplemented for fun and practice

Distributed Algorithms Playground for reimplementing and experimenting with algorithms for distributed computing. Usage Running the code for Ring-AllR

Mahan Tourkaman 1 Oct 16, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline, a Pythonic Algorithmic Trading Library

Stefan Jansen 463 Jan 08, 2023
This project consists of a collaborative filtering algorithm to predict movie reviews ratings from a dataset of Netflix ratings.

Collaborative Filtering - Netflix movie reviews Description This project consists of a collaborative filtering algorithm to predict movie reviews rati

Shashank Kumar 1 Dec 21, 2021
Benchmark for Robustness Tests of Control Alrogithms

A gym-like classical control benchmark for evaluating the robustnesses of control and reinforcement learning algorithms.

Kim Taekyung 4 Jan 18, 2022
An open source algorithm and dataset for finding poop in pictures.

The shitspotter module is where I will be work on the "shitspotter" poop-detection algorithm and dataset. The primary goal of this work is to allow for the creation of a phone app that finds where yo

Jon Crall 29 Nov 29, 2022
My own Unicode compression algorithm

Zee Code ZCode is a custom compression algorithm I originally developed for a competition held for the Spring 2019 Datastructures and Algorithms cours

Vahid Zehtab 2 Oct 20, 2021
🧬 Performant Evolutionary Algorithms For Python with Ray support

🧬 Performant Evolutionary Algorithms For Python with Ray support

Nathan 49 Oct 20, 2022
Fedlearn algorithm toolkit for researchers

Fedlearn algorithm toolkit for researchers

89 Nov 14, 2022
A fast, pure python implementation of the MuyGPs Gaussian process realization and training algorithm.

Fast implementation of the MuyGPs Gaussian process hyperparameter estimation algorithm MuyGPs is a GP estimation method that affords fast hyperparamet

Lawrence Livermore National Laboratory 13 Dec 02, 2022
zoofs is a Python library for performing feature selection using an variety of nature inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics based to Evolutionary. It's easy to use ,flexible and powerful tool to reduce your feature size.

zoofs is a Python library for performing feature selection using a variety of nature-inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics-based to Evolutionary. It's e

Jaswinder Singh 168 Dec 30, 2022
N Queen Problem using Genetic Algorithm

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other.

Mahdi Hassanzadeh 2 Nov 11, 2022
This is the code repository for 40 Algorithms Every Programmer Should Know , published by Packt.

40 Algorithms Every Programmer Should Know, published by Packt

Packt 721 Jan 02, 2023
Path tracing obj - (taichi course final project) a path tracing renderer that can import and render obj files

Path tracing obj - (taichi course final project) a path tracing renderer that can import and render obj files

5 Sep 10, 2022
FLIght SCheduling OPTimization - a simple optimization library for flight scheduling and related problems in the discrete domain

Fliscopt FLIght SCheduling OPTimization 🛫 or fliscopt is a simple optimization library for flight scheduling and related problems in the discrete dom

33 Dec 17, 2022
This is a Python implementation of the HMRF algorithm on networks with categorial variables.

Salad Salad is an Open Source Python library to segment tissues into different biologically relevant regions based on Hidden Markov Random Fields. The

1 Nov 16, 2021
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
Robotic Path Planner for a 2D Sphere World

Robotic Path Planner for a 2D Sphere World This repository contains code implementing a robotic path planner in a 2D sphere world with obstacles. The

Matthew Miceli 1 Nov 19, 2021
Algorithmic trading backtest and optimization examples using order book imbalances. (bitcoin, cryptocurrency, bitmex)

Algorithmic trading backtest and optimization examples using order book imbalances. (bitcoin, cryptocurrency, bitmex)

172 Dec 21, 2022
marching Squares algorithm in python with clean code.

Marching Squares marching Squares algorithm in python with clean code. Tools Python 3 EasyDraw Creators Mohammad Dori Run the Code Installation Requir

Mohammad Dori 3 Jul 15, 2022
Genetic algorithm which evolves aoe2 DE ai scripts

AlphaScripter Use the power of genetic algorithms to evolve AI scripts for Age of Empires II : Definitive Edition. For now this package runs in AOC Us

6 Nov 04, 2022